Answer:
At the high temperatures of the inner solar nebula, the small proto-planets were too hot to hold the volatile gases that dominated the solar nebula. These proto-planets were Earth, Mars, Venus, and Mercury.
Explanation:
The materials that accreted into the early Earth were probably added piecemeal, without and particular order. The early earth was very hot from gravitational compression, impacts and radioactive decay; the earth was partially molted. The denser metallic liquids sank to the center of the Earth and less denser silicate liquids rose to the top. In this way the Earth differentiated very quickly into a metallic, mostly iron core and a rocky silicate mantle.
Answer:A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs, and the stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding.
Explanation:
Answer:
The correct option is c.
Explanation:
Metabolism is a sum of anabolic and catabolic reactions. The body's inability to produce/synthesize enough insulin is the cause of type II diabetes. Generally, metabolism is the process in which most compounds (proteins, carbohydrates and lipids) are produced (anabolism) or broken down (catabolism) in the body. Insulin is a protein that can be produced in less amount due to metabolic disorder in the body.
Maria's disease means she already has an exponentially high amount of blood sugar against the required insulin to balance it out, hence the disease already slowed down her rate of metabolism (catabolism) of blood sugar EXCEPT she decides to increase of metabolism by medication and exercise.
Answer: 757m/s
Explanation:
Given the following :
Mole of neon gas = 1.00 mol
Temperature = 465k
Mass = 0.0202kg
Using the ideal gas equation. For calculating the average kinetic energy molecule :
0.5(mv^2) = 3/2 nRt
Where ;
M = mass, V = volume. R = gas constant(8.31 jK-1 mol-1, t = temperature in Kelvin, n = number of moles
Plugging our values
0.5(0.0202 × v^2) = 3/2 (1 × 8.31 × 465)
0.0101 v^2 = 5796.225
v^2 = 5796.225 / 0.0101
v^2 = 573883.66
v = √573883.66
v = 757.55109m/s
v = 757m/s
Answer:
See answer
Explanation:
The area of the circular loop is given by:

The magnetic flux is given by:

is parallel to
and
is constant in magnitude and direction therefore:

Part A)
initially the flux is 
after the interval
the flux is

now, the EMF is defined as:
,
if we consider
very small then we can re-write it as:

then:
![\epsilon =- \frac{-0.12}{0.0024} = 50 [V]](https://tex.z-dn.net/?f=%5Cepsilon%20%3D-%20%5Cfrac%7B-0.12%7D%7B0.0024%7D%20%3D%2050%20%5BV%5D)
Part B)
When looked down from above, the current flows counter clockwise, according to the right hand rule, if you place your thumb upwards (the direction of the magnetic field) and close your fingers, then the current will flow in the direction of your fingers.