The weight is not coming from the center of the mass because the force that act on it is not is equal is side.(2) section B donot have weight because the ruler bend down and section be raise up so no weight.
Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.
It's the angle made by the incident ray when it's perpendicular to the surface. (Perpendicular lines are the lines that form a graph or like a 90-degree angle)
Answer:
Distance of the point where electric filed is 2.45 N/C is 1.06 m
Explanation:
We have given charge per unit length, that is liner charge density 
Electric field E = 2.45 N/C
We have to find the distance at which electric field is 2.45 N/C
We know that electric field due to linear charge is equal to
, here
is linear charge density and r is distance of the point where we have to find the electric field
So 
r = 1.06 m
So distance of the point where electric filed is 2.45 N/C is 1.06 m
Answer:
C. Both A and B
Explanation:
Fuses are rated by the amperage they can carry before heat melts the element. The fuse is ideal for protection against short circuits. Short circuits produce enough amperage to vaporize a fuse element and break connection in one cycle of a 60-cycle system.
Specifically, the voltage rating determines the ability of the fuse to suppress the internal arcing that occurs after a fuse link melts and an arc is produced.