Answer:
Part 1) Time of travel equals 61 seconds
Part 2) Maximum speed equals 39.66 m/s.
Explanation:
The final speed of the train when it completes half of it's journey is given by third equation of kinematics as

where
'v' is the final speed
'u' is initial speed
'a' is acceleration of the body
's' is the distance covered
Applying the given values we get

Now the time taken to attain the above velocity can be calculated by the first equation of kinematics as

Since the deceleration is same as acceleration hence the time to stop in the same distance shall be equal to the time taken to accelerate the first half of distance
Thus total time of journey equals
Part b)
the maximum speed is reached at the point when the train ends it's acceleration thus the maximum speed reached by the train equals 
This question involves the concepts of potential difference, inductance, and current.
The minimum time that should be allowed for the current to change is "0.694 ms".
The inductance of an inductor is given by the following formula:

where,
E = potential difference across the inductor = 360 volts
L = inductance of the inductor = 250 mH = 0.25 H
ΔI = change in current = 2.5 A - 1.5 A = 1 A
Δt = time required = ?
Therefore,

<u>Δt = 6.94 x 10⁻⁴ s = 0.694 ms</u>
<u></u>
Learn more about inductance here:
brainly.com/question/17431388?referrer=searchResults
<u></u>
Answer:
True.
Explanation:
A nanometer is a unit of mass, whereas a nanosecond is a unit of time. To convert 1.3 hours to minute, you would multiply by 1 h / 60 min. Kilometer is a unit of length, whereas kilogram is a unit of mass. True.
Answer:
i think this is the answer
Explanation: