Answer:
Appearing disoriented, such as swimming upside down.
Leaving food uneaten.
White spots on fins or body.
Discolored gills.
Explanation:
Gold Fish are unable to regulate their body temperature, so they are influenced by the temperature around them. If the water is warm, gold fish metabolism accelerates, feeding and respiration increases, and there is a general increase in movement. If the water is cooler, fish become lethargic and tend to be inactive.
The most abundant of all of the isotopes of an element will be the one who's mass the mass of element is closest to. In this case, the mass of atomic carbon is closest to the mass of carbon-12.
Thus, Carbon-12 is the most abundant isotope.
Answer:
Number of moles = 10.6 mol
Explanation:
Given data:
Molar mass of H = 1.008 g/mol
Molar mass of C = 12.01 g/mol
Molar mass of O = 16.00 g/mol
Mass of citric acid = 2.03 kg (2.03×1000 = 2030 g)
Number of moles of citric acid = ?
Solution:
Formula:
Number of moles = mass/molar mass
Now we will calculate the molar mass of citric acid:
C₆H₈O₇ = (12.01× 6) + (1.008×8) + (16.00×7)
C₆H₈O₇ = 72.06 + 8.064+112
C₆H₈O₇ = 192.124g/mol
Number of moles = 2030 g/ 192.124g/mol
Number of moles = 10.6 mol
Answer: a)
: Decomposition
b)
: double displacement
c)
: Synthesis (Combination)
d)
: redox
Explanation:
Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.

A double displacement reaction is one in which exchange of ions take place.

Synthesis reaction is a chemical reaction in which two reactants are combining to form one product.

Redox reaction is a type of chemical reaction in which oxidation and reduction takes place in one single reaction. The oxidation number of one element increases and the oxidation number of other element decreases.

Yes. Heating up the solvent gives the molecules more kinetic energy. The more rapid motion means that the solvent molecules collide with the solute with greater frequency and the collisions occur with more force. Both factors increase the rate at which the solute dissolves.