Answer:
The thrown rock will strike the ground
earlier than the dropped rock.
Explanation:
<u>Known Data</u>
![y_{f}=0m](https://tex.z-dn.net/?f=y_%7Bf%7D%3D0m)
![v_{iD}=0m/s](https://tex.z-dn.net/?f=v_%7BiD%7D%3D0m%2Fs)
, it is negative as is directed downward
<u>Time of the dropped Rock</u>
We can use
, to find the total time of fall, so
, then clearing for
.
![t_{D}=\sqrt[2]{\frac{300m}{4.9m/s^{2}}} =\sqrt[2]{61.22s^{2}} =7.82s](https://tex.z-dn.net/?f=t_%7BD%7D%3D%5Csqrt%5B2%5D%7B%5Cfrac%7B300m%7D%7B4.9m%2Fs%5E%7B2%7D%7D%7D%20%3D%5Csqrt%5B2%5D%7B61.22s%5E%7B2%7D%7D%20%3D7.82s)
<u>Time of the Thrown Rock</u>
We can use
, to find the total time of fall, so
, then,
, as it is a second-grade polynomial, we find that its positive root is
Finally, we can find how much earlier does the thrown rock strike the ground, so ![t_{E}=t_{D}-t_{T}=7.82s-5.4s=2.42s](https://tex.z-dn.net/?f=t_%7BE%7D%3Dt_%7BD%7D-t_%7BT%7D%3D7.82s-5.4s%3D2.42s)