Answer: The simplest way to use the periodic table to identify an element is by looking for the element's name or elemental symbol. The periodic table can be used to identify an element by looking for the element's atomic number. The atomic number of an element is the number of protons found within the atoms of that element.
Answer: m= 1.02x10² g AlCl3 or 1091.3 g AlCl3
Explanation: solution attached.
Convert mass of Mg to moles
Do the mole ratio between Mg and AlCl3 based from the balanced equation.
Convert moles of AlCl3 to mass using its molar mass.
With that informatio you can:
1) Write the chemical equation
2) Balance the chemical equation
3) State the molar ratios
4) Predict if precipitation occurs.
I will do all four, for you:
1) Chemical equation:
mercury(I) nitrate potassium bromide mercury(I) bromide potassium nitrate
<span>Hg2(NO3)2 + KBr → Hg2Br2 + KNO<span>3
2) Balanced chemical equation
</span></span>
<span>Hg2(NO3)2 + 2KBr → Hg2Br2 + 2KNO<span>3
3) Molar ratios or proportions:
1 mol </span></span><span>Hg2(NO3)2 : 2 mol KBr : 1 mol Hg2Br2 : 2 mol KNO<span>3
4) Prediction of precipitation.
You can use the solubility rules or a table of solubilities. I found in a table of solutiblities that mercury(I) bromide is insoluble and potassium bromide is soluble, Then you can predict that the precipitation of mercury(I) bromide will occur.
</span></span>
2000/18 =111.111111
111.1 moles
Answer:
1 mole of any ideal gas occupies the same volume as one mole of any other ideal gas under the same conditions of temperature and pressure.So 1 L CO2 has same number of moles as 1 L O2 and 1 L N2 etc.This means that, assuming all the gases in air are ideal gases, if CO2 is 4.0 % by volume then it is also 4.0 % by moles, because a volume of each gas has the same number of moles.
Explanation: