Since the only way of water flow to these lakes or bodies of water is through evaporation, I would expect an increase in unknown substances in the composition of the lakes due to the amount of contamination that globalization produces and affects terribly the surroundings when these unknown substances travel through evaporation as the outlet of these bodies of water. Therefore I think continuous contamination is what to expect after many more years of inflow and evaporation.
Answer:
Kindly check the explanation section.
Explanation:
From the description given in the question above, that is '' H subscript f to the power of degree of the reaction" we have that the description matches what is known as the heat of formation of the reaction, ∆fH° where the 'f' is a subscript.
In order to determine the heat of formation of any of the species in the reaction, the heat of formation of the other species must be known and the value for the heat of reaction, ∆H(rxn) must also be known. Thus, heat of formation can be calculated by using the formula below;
∆H(rxn) = ∆fH°( products) - ∆fH°(reactants).
That is the heat of formation of products minus the heat of formation of the reaction g specie(s).
Say heat of formation for the species is known as N(g) = 472.435kj/mol, O(g) = 0kj/mol and NO = unknown, ∆H°(rxn) = −382.185 kj/mol.
−382.185 = x - 472.435kj/mol = 90.25 kJ/mol
Answer : The correct option is, (D) CO₂, BCl₃, and Fe³⁺
Explanation :
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.
(a) 
It is a Lewis-acid because it can accepts electron pairs.
(b) 
It is not a Lewis-acid because it can not accepts electron pairs but it is a base because it can donates and accept hydrogen ion.
(c) 
It is a Lewis-acid because it can accepts electron pairs because it has an incomplete octet and an empty 2p orbital.
(d) 
It is a Lewis-acid because it can accepts electron pairs.
Hence, the ions which behave as Lewis acids are, CO₂, BCl₃, and Fe³⁺
Answer: 15.8 g of
will be required to produce 1.60 grams of 
Explanation:
To calculate the moles :

According to stoichiometry :
As 1 mole of
is given by = 2 moles of 
Thus 0.05 moles of
is given by =
of 
Mass of 
Thus 15.8 g of
will be required to produce 1.60 grams of 