1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STALIN [3.7K]
3 years ago
8

What is the process in which matter changes from the liquid to the solid state?

Chemistry
2 answers:
DanielleElmas [232]3 years ago
6 0

Answer:

freezing

Explanation:

hope it is helpful

snow_lady [41]3 years ago
3 0

Answer:

freezing. b.

Explanation:

You might be interested in
Which of these represents a compound ? *<br> Water<br> Hydrogen<br> Oxygen
fiasKO [112]

Answer:

water

Explanation:

H2O

8 0
3 years ago
Read 2 more answers
2C2H2 + 5O2 → 4CO2 + 2H2O
Mumz [18]

Answer:

d. Two moles of carbon dioxide were produced from this reaction

Explanation:

The given chemical reaction can be written as follows;

2C₂H₂ + 5O₂ → 4CO₂ + 2H₂O

From the above chemical reaction, we have;

Two moles of C₂H₂ reacts with five moles of O₂ to produce four moles of CO₂ and two moles of H₂O

We have;

One mole of C₂H₂ will react with two and half moles of O₂ to produce <em>two moles of CO₂</em> and one mole of H₂O

Therefore, in the above reaction, when one mole of C₂H₂ is used, two moles of CO₂ will be produced.

8 0
3 years ago
Include two kinds
MatroZZZ [7]

Answer:

Explanation:

Ionic bond:

It is the bond which is formed by the transfer of electron from one atom to the atom of another element.  

Both bonded atoms have very large electronegativity difference. The atom with large electronegativity value accept the electron from other with smaller value of electronegativity.

For example:

Sodium chloride is ionic compound. The electronegativity of chlorine is 3.16 and for sodium is 0.93. There is large difference is present. That's why electron from sodium is transfer to the chlorine. Sodium becomes positive and chlorine becomes negative ion.  Both atoms are joint together by electrostatic interaction and ionic compound sodium chloride is formed.

Covalent bond:

It is formed by the sharing of electron pair between bonded atoms.  

The atom with larger electronegativity attract the electron pair more towards it self and becomes partial negative while the other atom becomes partial positive.

For example:

In water the electronegativity of oxygen is 3.44 and hydrogen is 2.2. That's why electron pair attracted more towards oxygen, thus oxygen becomes partial negative and hydrogen becomes partial positive and both bonded atoms connected together through covalent bond.

8 0
3 years ago
Stoichiometry<br> Please show how to get this I don't understand any part of it!!
tatiyna

Answer:

The following is a rather lengthy discussion on chemical stoichiometry, but it will lead you through the mole concept and its application to chemical reaction stoichiometry. The problems are different than the one posted, but if you can follow this, then you can work your problem of interest.

Explanation:

Stoichiometry is very easy to master if you understand the ‘mole concept’ and how it is used to define and describe chemical process mathematically. A ‘mole’ – in chemistry – is the mass of substance containing one Avogadro’s Number of particles. That is, N₀ = 6.023 x 10²³ particles / mole. When working with chemical reactions and equations data should be first converted to moles using the following conversions.  

1 mole = 1 formula weight = 6.023 x 10²³ particles = 22.4 liters at STP(0⁰, 1atm).

In this problem you are given the equation 2Na + 2H₂O => 2NaOH + H₂. ‘Reading the equation’ there are 2 moles of Na, 2 moles of water, 2 moles of NaOH and 1 mole of H₂. In another example 3H₂ + N₂ => 2NH₃ there are 3 moles of H₂, 1 mole of N₂ and 2 moles of NH₃. The mole values can be multiples or fractions but if one mole value increases all the remaining mole values increase or decrease proportionally. For example:

Using the equation 2Na + 2H₂O => 2NaOH + H₂, one could multiply the equation by 2 giving 4Na + 4H₂O => 4NaOH + 2H₂. The equation shows balance but is not in standard form. If one multiplies the equation by ½ gives Na + H₂ => NaOH + ½H₂. Again, the equation shows balance but is not in standard form.

Standard form of equation also implies the equation conditions are at 0⁰C & 1atm pressure and 1 mole of any gas phase substance occupies 22.4 Liters volume. Such is the significance of converting given data to moles as all other substance mass (in moles) are proportional.  

1st problem, 1.76 x 10²⁴ formula units of Na will react with water (usually read as an excess) to produce (?) grams of H₂.

1st write the equation followed by listing the givens below the respective formulas… That is…

                         Na                      +            H₂O       =>    NaOH    +    H₂,

Given:      1.76 x 10²⁴ atoms                excess             ---------          ? grams

               = 1.76 x 10²⁴atoms/6.023 x 10²³atoms/mole

               = 2.922moles                                        produces  =>    2.922moles H₂ (b/c coefficients of Na & H₂ are same)

                                                      Convert moles to grams =>    2.922moles H₂  x  2.000 grams H₂/mole H₂

                                                                                                              = 5.8443 grams H₂

2nd problem, 3.5 moles Na will react with H₂O (in excess) to produce (?) moles of NaOH.

Again, write equation and assign values to each formula unit in the equation.

                         Na                      +            H₂O        =>           NaOH    +    H₂,

Given:            3.5moles                       excess                      ? grams       ----

Since coefficients of balanced std equation are equal …

                      3.5 moles Na                          produces =>     3.5 moles NaOH

                                             Convert moles to grams =>     3.5 moles NaOH x 40 g Na/mole Na

                                                                                                  = 140 grams NaOH

3rd problem, 2.75 x 10²⁵ molecules H₂O will react with (?) atoms of Na.

Same procedure, convert to moles, solve problem by ratios then convert to needed dimension at end of problem.

                         Na          +            H₂O                                   =>           NaOH           +    H₂

Given:           excess            2.75 x 10²⁵ molecules H₂O    =>      ? atoms NaOH       ----

Convert to moles =>          2.75 x 10²⁵ molecules H₂O / 6.023 x 10²³ molecules H₂O/mole H₂O  

                                             = 45.658 moles H₂O              =>  45.658 moles NaOH  (coefficients are equal)

Convert moles NaOH to grams NaOH                            =>   45.658 moles NaOH x  40 grams NaOH/mole NaOH

                                                                                                     = 1826.33 grams NaOH  

Master the mole concept and you master a lot of chemistry! Good luck.

8 0
3 years ago
A 27.9 mL sample of 0.289 M dimethylamine, (CH3)2NH, is titrated with 0.286 M hydrobromic acid.
sesenic [268]

Answer:

(1) Before the addition of any HBr, the pH is 12.02

(2) After adding 12.0 mL of HBr, the pH is 10.86

(3) At the titration midpoint, the pH is 10.73

(4) At the equivalence point, the pH is 5.79

(5) After adding 45.1 mL of HBr, the pH is 1.18

Explanation:

First of all, we have a weak base:

  • 0 mL of HBr is added

(CH₃)₂NH  + H₂O  ⇄  (CH₃)₂NH₂⁺  +  OH⁻            Kb = 5.4×10⁻⁴

0.289 - x                             x                x

Kb = x² / 0.289-x

Kb . 0.289 - Kbx - x²

1.56×10⁻⁴ - 5.4×10⁻⁴x - x²

After the quadratic equation is solved x = 0.01222 → [OH⁻]

- log  [OH⁻] = pOH → 1.91

pH = 12.02   (14 - pOH)

  • After adding 12 mL of HBr

We determine the mmoles of H⁺, we add:

0.286 M . 12 mL = 3.432 mmol

We determine the mmoles of base⁻, we have

27.9 mL . 0.289 M = 8.0631 mmol

When the base, react to the protons, we have the protonated base plus water (neutralization reaction)

(CH₃)₂NH     +      H₃O⁺        ⇄  (CH₃)₂NH₂⁺  +  H₂O

8.0631 mm       3.432 mm                 -

4.6311 mm                                  3.432 mm

We substract to the dimethylamine mmoles, the protons which are the same amount of protonated base.

[(CH₃)₂NH] → 4.6311 mm / Total volume (27.9 mL + 12 mL) = 0.116 M

[(CH₃)₂NH₂⁺] → 3.432 mm / 39.9 mL = 0.0860 M

We have just made a buffer.

pH = pKa + log (CH₃)₂NH  / (CH₃)₂NH₂⁺

pH = 10.73 + log (0.116/0.0860) = 10.86

  • Equivalence point

mmoles of base = mmoles of acid

Let's find out the volume

0.289 M . 27.9 mL = 0.286 M . volume

volume in Eq. point = 28.2 mL

(CH₃)₂NH     +      H₃O⁺        ⇄  (CH₃)₂NH₂⁺  +  H₂O

8.0631 mm       8.0631mm               -

                                                8.0631 mm

We do not have base and protons, we only have the conjugate acid

We calculate the new concentration:

mmoles of conjugated acid / Total volume (initial + eq. point)

[(CH₃)₂NH₂⁺] = 8.0631 mm /(27.9 mL + 28.2 mL)  = 0.144 M

(CH₃)₂NH₂⁺   +  H₂O   ⇄   (CH₃)₂NH  +  H₃O⁻       Ka = 1.85×10⁻¹¹

 0.144 - x                                  x               x

[H₃O⁺] = √ (Ka . 0.144) →  1.63×10⁻⁶ M  

pH = - log [H₃O⁺] = 5.79

  • Titration midpoint (28.2 mL/2)

This is the point where we add, the half of acid. (14.1 mL)

This is still a buffer area.

mmoles of H₃O⁺ = 4.0326 mmol (0.286M . 14.1mL)

mmoles of base = 8.0631 mmol - 4.0326 mmol

[(CH₃)₂NH] = 4.0305 mm / (27.9 mL + 14.1 mL) = 0.096 M

[(CH₃)₂NH₂⁺] = 4.0326 mm (27.9 mL + 14.1 mL) = 0.096 M

pH = pKa + log (0.096M / 0.096 M)

pH = 10.73 + log 1 =  10.73

Both concentrations are the same, so pH = pKa. This is the  maximum buffering capacity.

  • When we add 45.1 mL of HBr

mmoles of acid = 45.1 mL . 0.286 M = 12.8986 mmol

mmoles of base = 8.0631 mmoles

This is an excess of H⁺, so, the new [H⁺] = 12.8986 - 8.0631 / Total vol.

(CH₃)₂NH     +      H₃O⁺        ⇄  (CH₃)₂NH₂⁺  +  H₂O

8.0631 mm     12.8986 mm             -

       -               4.8355 mm                        

[H₃O⁺] = 4.8355 mm / (27.9 ml + 45.1 ml)

[H₃O⁺] = 4.8355 mm / 73 mL → 0.0662 M

- log [H₃O⁺] = pH

- log 0.0662 = 1.18 → pH

7 0
3 years ago
Other questions:
  • A chemical bond between two atoms results from a simultaneous
    7·2 answers
  • What island chain is South America was the source of many of Darwin’s insights
    5·1 answer
  • Redox 1/2 reaction Cu(s) + 2 AgC2H3O2(aq) = Cu(C2H3O2)2(aq) + 2 Ag(s)
    6·1 answer
  • Which scientist discovered that the atomic number, rather than the atomic weight, is more responsible for the properties of an e
    8·1 answer
  • A coffee-cup calorimeter initially contains 125 g water at 24.28C. Potassium bromide (10.5 g), also at 24.28C, is added to the w
    13·1 answer
  • Which material is not a form of pyroclastic material?
    9·1 answer
  • When solid water changes directly to water vapor without first becoming a liquid, the process is called?
    14·1 answer
  • Breathe in air container more ____ than breathed out air
    6·1 answer
  • What keeps galaxies togther? How?
    14·1 answer
  • Match the following terms:
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!