Answer:
The correct answer is B. Since the two metals have the same mass, but the specific heat capacity of iron is much greater than that of gold, the final temperature of the two metals will be closer to 498 K than to 298 K
Explanation:
Iron is hotter and gold is colder, therefore, according to laws of thermodynamics, iron will lose heat to gold until they are at the same temperature.
The specific heat capacity of iron(0.449) is over three times that of gold(0.128). Since masses are equal, this means that each time iron's temperature drops by one degree, the energy released it releases makes gold's temperature increase by more than 3 degrees. So gold's temperature will be climbing much faster than iron's is falling. Meaning they will meet closer to the initial temperature of iron than that of gold
Answer:
The correct answer is option B.
Explanation:

Moles of
= 40 mol
Moles of NaOH = 48 mol
According to reaction, 3 moles of NaOH reacts with 2 moles 
Then ,48 moles of NaOH will reacts with:
of 
Then ,40 moles of
will reacts with:
of NaOH
As we can see that 48 moles of sodium will completey react with 32 moles of nitrogen tribromide.
Moles left after reaction = 40 mol - 32 mol = 8 mol
Hence, the
is an excessive reagent.
Explanation:
Bohr built on Nicholson's idea by adopting the requirement that the angular momentum can have only certain discrete values related to Planck's constant. However Bohr's atom has many orbits for the electrons.