<h3><u>Answer;</u></h3>
= 78 g of NaOH
<h3><u>Explanation;</u></h3>
Concentration = Moles of solute/Volume of solution
Thus;
Moles of the solute = Volume × Concentration
= 7.80 Moles/L × 0.250 L
= 1.95 moles
But; 1 mole of NaOH = 40.0 g
Thus;
Mass of NaOH = moles × molar mass
= 1.95 moles × 40 g/mole
<u> = 78 g of NaOH</u>
Answer:
[CaCl₂] = 1.32 M
Explanation:
We know the volume of solution → 0.30 L
We know the mass of solute → 44 g of CaCl₂
Let's convert the mass of solute to moles.
44 g . 1 mol / 110.98 g = 0.396 moles
Molarity (mol/L) → 0.396 mol / 0.3 L = 1.32 M
A pure element unbound or in a diatomic state, such as cl2, always has an oxidation number of 0 (zero).
<h3>Why does pure element or a diatomic molecule has zero oxidation state?</h3>
In a neutral substance with atoms of only one element, the oxidation number of an atom is zero. As a result, the oxidation number of the atoms in O2, O3, P4, S8, and aluminum metal is 0. The oxidation numbers for an element in its normal state will be zero. O2 and Cl2 are diatomic gas molecules that occur naturally, thus when they are in that state, they have an oxidation state of zero. Metals like zinc will also have an oxidation number of zero if they are in their natural solid state.
O2 and Cl2 are neutral diatomic, hence they will always have a zero oxidation state. It is impossible for one oxygen atom to have a negative 2 charge while the other has a positive 2. The oxidation states should be 0 if the elements are solids, liquids, or any type of diatomic molecule.
Learn more about oxidation state here:
brainly.com/question/6707068
#SPJ4
Answer
:yes or no
Explanation:
you needd tol try it yolurself
Answer:
The unknown liquid has low H+ concentrations and high OH- concentrations.
Explanation: