Answer:
-81.5 degrees C or 191.5 K
Explanation:
We want to use Charles' gas law: V/T = V/T
Our initial volume is 3.20 L, and our initial temperature is 125 degrees C, or 125 + 273 = 398 degrees Kelvin.
Our new Volume is 1.54 L, but we don't know what the temperature is. So, we use the equation:
3.20 L / 398 K = 1.54 L / T ⇒ Solving for T, we get: T = 191.5 K
If we want this in degrees Celsius, we subtract 273: 191.5 - 273 = -81.5 degrees C
Answer:
285g of fluorine
Explanation:
To solve this problem we need to find the mass of Freon in grams. Then, with its molar mass we can find moles of freon and, as 1 mole of Freon, CCl₂F₂, contains 2 moles of fluorine, we can find moles of fluorine and its mass:
<em>Mass Freon:</em>
<em>2.00lbs * (454g / 1lb) = </em>908g of Freon
<em>Moles freon -Molar mass: 120.91g/mol- and moles of fluorine:</em>
908g of Freon * (1mol / 120.91g) =
7.5 moles of freon * (2moles Fluorine / mole Freon): 15 moles of fluorine
<em>Mass fluorine -Atomic mass: 19g/mol-:</em>
15 moles F * (19g / mol) =
<h3>285g of fluorine</h3>