Answer:
1) No
2) The solvent contaminated the analyte
3) The solvent should be evaporated properly before washing and drying the analyte
Explanation:
During separation of organic compounds, solvents are used. These solvents are able to contaminate the analyte and lead to a large difference in melting point of solids obtained.
However, the error can be minimized by evaporating the solvent before washing, drying and melting point determination of the solid.
Answer:
do you want to know if the above answer is correct?
if yes its correct :)
Answer: Halogens tend to attract electrons when bonding (Option C)
Explanation: Halogens being non metals have greater electronegativities hence, attract electrons and making the statement disputed. Nobel gases are highly stable; this explains why they are nonreactive. They do not form chemical bonds because they only have a little tendency to either gain or lose an electron; on the other hand, halogens are reactive because they only need one additional electron to complete their octet.
One Hydrogen atom (H) and one Oxygen atom (O) surround the central Carbon atom (C) in the HCP Lewis structure (O). Carbon (C) and Phosphorus (P) have a triple bond, and Carbon (C) and Hydrogen (H) have a single bond.
<h3>How can you choose the ideal format for a formal charge?</h3>
The Lewis structure with the negative formal charges on the most electronegative atoms is the one to choose from when faced with a choice between numerous Lewis structures with similar formal charge distributions.
<h3>How do you determine the preferred resonance structure?</h3>
The resonance forms with the fewest non-zero formal charge atoms are selected. Resonance develops atoms that have a negative formal charge or are the most electronegative are preferred.
To know more about Lewis structure visit:-
brainly.com/question/20300458
#SPJ4
Answer:
Alcohols are usually named by the first procedure and are designated by an -ol suffix, as in ethanol, CH3CH2OH (note that a locator number is unnecessary on a two-carbon chain). On longer chains the location of the hydroxyl group determines chain numbering. For example: (CH3)2C=CHCH(OH)CH3 is 4-methyl-3-penten-2-ol.10
Explanation: