Answer You need to consider that the gravity on earth is 9.8 m/s/s. This means any object you let go on the earths surface will gain 9.8 m/s of speed every second. You need to apply a force on the object in the opposite direction to avoid this acceleration. If you are pushing something up at a constant speed, you are just resisting earths acceleration. The more massive and object is, the greater force is needed to accelerate it. The equation is Force = mass*acceleration. So for a 2kg object in a 9.8 m/s/s gravity you need 2kg*9.8m/s/s = 19.6 Newtons to counteract gravity. Work or energy = force * distance. So to push with 19.6 N over a distance of 2 meters = 19.6 N*2 m = 39.2 Joules of energy. There is an equation that puts together those two equations I just used and it is E = mgh
The amount of Energy to lift an object is (mass) * (acceleration due to gravity) * (height)
:Hence, the Work done to life the mass of 2 kg to a height of 10 m is 196 J. Hope it helps❤️❤️❤️
Explanation:
Answer:
C
Explanation:
Ray of light when hits any specimen or object. The light is partially reflected, partially reflected and partially absorbed. It is never completed reflected, refracted or absorbed. Hence, the correct answer would be c.
Force bc it says the ability to make stuff happen
Answer:
The speed of the car, v = 19.997 m/s
Explanation:
Given,
The centripetal acceleration of the car, a = 13.33 m/s²
The radius of the curve, r = 30 m
The centripetal force acting on the car is given by the formula
F = mv²/r
Where v²/r is the acceleration component of the force
a = v²/r
Substituting the values in the above equation
13.33 = v²/30
v² = 13.33 x 30
v² = 399.9
v = 19.997 m/s
Hence, the speed of the car, v = 19.997 m/s
Answer:
Explanation:
Kinetic Energy formula:
KE =
mv²
m=mass
v=speed
Given:
m=0.25kg
v=2.5m/s
Plug the values in:
KE = 1/2(0.25kg)(2.5m/s)²
KE = 0.78125 J (Joules)