The six commonly recognised metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium....
Answer:
Explanation:
The magnetic field is straight up. It is reducing . As per Lenz's law , direction of induced current is such that it opposes the reason which creates it . magnetic field in upper direction is reducing . So current will be such that magnetic field produced by it increases magnetic field in upper direction . In other words , induced current should create magnetic field in upward direction. It is possible when direction of induced current is anti - clockwise, when seen from above.
Answer:
The relationship is only between the coefficients A, E and J which is:
. The remaining coefficients can be anything without any constraints.
Explanation:
Given:
The three components of velocity is a velocity field are given as:

The fluid is incompressible.
We know that, for an incompressible fluid flow, the sum of the partial derivatives of each component relative to its direction is always 0. Therefore,

Now, let us find the partial derivative of each component.

Hence, the relationship between the coefficients is:

There is no such constraints on other coefficients. So, we can choose any value for the remaining coefficients B, C, D, F, G and H.
Answer:
A. a meteor traveling unhindered through space
Explanation:
The angular velocity of the wheel at the bottom of the incline is 4.429 rad/sec
The angular velocity (ω) of an object is the rate at which the object's angle position is changing in relation to time.
For a wheel attached to an incline angle, the angular velocity can be computed by considering the conservation of energy theorem.
As such the total kinetic energy (K.E) and rotational kinetic energy (R.K.E) at a point is equal to the total potential energy (P.E) at the other point.
i.e.
P.E = K.E + R.K.E







Therefore, we can conclude that the angular velocity of the wheel at the bottom of the incline is 4.429 rad/sec
Learn more about angular velocity here:
brainly.com/question/1452612