1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlexFokin [52]
3 years ago
11

You have a piece of cork with a volume of 2 cm^3 and a density of 210kg/m^3. You hold it under water and release it.

Physics
1 answer:
insens350 [35]3 years ago
7 0

I am sorry if it didn't helped

answers;

Calculate the buoyant force of a piece of cork of 8cm3 that floats in water. Density of cork is 207kg/m3. ?

I need the mass, in order to get the volume to apply t to the Buoyancy formula of: B=(W)object=(m)object(g)

Explanation:

From Archimedes Principle, any object partially or totally submerged in a fluid is buoyed upwards with a force equal to the weight of the displaced fluid.

∴

B

=

ρ

f

l

V

f

l

g

=

1000

k

g

/

m

3

×

8

×

10

−

6

m

3

×

9

,

8

m

/

s

2

=

0

,

0784

N

(assuming the density of water is at standard temperature and pressure, and that the cork is totally submerged as it floats in the water

it's not the answer of your question ⁉️ but it is similar ........

You might be interested in
An electron and a proton are held on an x axis, with the electron at x = + 1.000 m and the proton at x = - 1.000 m. Part A How m
r-ruslan [8.4K]

PART A)

Electrostatic potential at the position of origin is given by

V = \frac{kq_1}{r_1} + \frac{kq_2}{r_2}

here we have

q_1 = 1.6 \times 10^{-19} C

q_2 = -1.6 \times 10^{-19} C

r_1 = r_2 = 1 m

now we have

V = \frac{Ke}{r} - \frac{Ke}{r}

V = 0

Now work done to move another charge from infinite to origin is given by

W = q(V_f - V_i)

here we will have

W = e(0 - 0) = 0

so there is no work required to move an electron from infinite to origin

PART B)

Initial potential energy of electron

U = \frac{Kq_1e}{r_1} + \frac{kq_2e}{r_2}

U = \frac{9\times 10^9(-1.6\times 10^{-19}(-1.6 \times 10^{-19})}{19} + \frac{9\times 10^9(1.6\times 10^{-19}(-1.6 \times 10^{-19})}{21}

U = (2.3\times 10^{-28})(\frac{1}{19} - \frac{1}{21})

U = 1.15\times 10^{-30}

Now we know

KE = \frac{1}{2}mv^2

KE = \frac{1}{2}(9.1\times 10^{-31}(100)^2

KE = 4.55 \times 10^{-27} kg

now by energy conservation we will have

So here initial total energy is sufficient high to reach the origin

PART C)

It will reach the origin

4 0
3 years ago
Identify which type of source is being described.
frez [133]

Answer:

Primary, secondary

Explanation:

3 0
3 years ago
Read 2 more answers
What is one way to induce an electric current
Lorico [155]
<span>1.an electric is induced when you move a magnet through a coil wire

2.a greater electric current is induced if you add more loops of wire</span>
8 0
3 years ago
A charge q1 of -5.00 x 10^-9 C and a charge q2 of -2.00x 10^-9 C are separated by a distance of 40.0 cm. Find the equilibrium po
Blababa [14]

The magnitude of charge on a proton and electron is the same, 1.602 x 10-19 C. Protons are +, and electrons -.

5 0
3 years ago
You have a battery marked " 6.00 V 6.00 V ." When you draw a current of 0.383 A 0.383 A from it, the potential difference betwee
Archy [21]

Answer:

V = 4.81 V

Explanation:

  • As the potential difference between the battery terminals, is less than the rated value of the battery, this means that there is some loss in the internal resistance of the battery.
  • We can calculate this loss, applying Ohm's law to the internal resistance, as follows:

        V_{rint} = I* r_{int}

  • The value of the potential difference between the terminals of the battery, is just the voltage of the battery, minus the loss in the internal resistance, as follows:

       V = V_{b} - V_{rint}  = 5.03 V = 6.0 V - 0.383 A* r_{int}

  • We can solve for rint, as follows:

         r_{int} = \frac{V_{b}-V}{I} =\frac{6.0V-5.03V}{0.383A} = 2.53 \Omega

  • When the circuit draws from battery a current I of 0.469A, we can find the potential difference between the terminals of the battery, as follows:

       V = V_{b} - V_{rint}  = 6.0 V - 0.469 A* 2.53 \Omega= 6.0 V - 1.19 V = 4.81 V

  • As the current draw is larger, the loss in the internal resistance will be larger too, so the potential difference between the terminals of the battery will be lower.
5 0
3 years ago
Other questions:
  • K20+H2O how many total oxygen atoms are there
    13·1 answer
  • A 50 g dart rests up against a spring that has been compressed 0.04 meters. It has a spring constant of 1560 N/m.What is the max
    9·1 answer
  • What do an electron and a neutron have in common?
    15·2 answers
  • Pollution that enters a water source directly through a pipe or other discharge outlet is called __________ pollution.
    7·2 answers
  • A nail in a pine board stops a 4.9-N hammer head from an initial downward velocity of 3.2 m/s in a distance of 0.45 cm. In addit
    11·1 answer
  • The sound level at 1.0 m from a certain talking person talking is 60 dB. You are surrounded by five such people, all 1.0 m from
    15·1 answer
  • The current in a hair dryer measures 15.0 amps. The resistance of the hair dryer is 8 ohms. What is the voltage?
    6·2 answers
  • Helium does not usually react with other substances. does this mean that helium has no chemical reactions
    5·1 answer
  • Can you answer this​
    5·2 answers
  • Are the two bulbs acting as current dividers or potential dividers? Explain your answer​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!