Answer:
The astronaut will be propelled towards the shuttle at the rate of 0.4 m/s.
Explanation:
Given;
mass of the astronaut, m₁ = 95 kg
mass of the hammer thrown, m₂ = 2 kg
velocity of the hammer, v₂ = 19 m/s
let the recoil velocity of the shuttle = v₁
Apply the principle of conservation of linear momentum;
m₁v₁ = m₂v₂
v₁ = m₂v₂/m₁
v₁ = (2 x 19) / 95
v₁ = 0.4 m/s
Therefore, the astronaut will be propelled towards the shuttle at the rate of 0.4 m/s.
Answer:
Correct option is
A
450 V and 15 A
P
in
=I
p
V
p
⇒T
p
=
V
p
P
in
=
200N
3000W
=15A
Efficciencyofthetransformer
η=
P
in
P
out
=
V
p
I
p
V
s
I
s
⇒
100
90
=
3000
6V
s
V
s
=
100×6
90×5000
=450V
Hence,
option (A) is correct answer.
Work is force*displacement if the force and displacement is parallel.
a. You can average the force over the distance so W = Fave*d
<span>b The force part of that multiplication is zero. </span>
<span>c. You can form the average force for the interval from 2 to 3 and find the work for that section and then consider the interval from 3 to 4, find the work and add the 2 work results.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
C. Equals
Explanation:
Law of reflection Equals the angle of incidence
Answer:
Block A will have a final charge of 3.5nC.
Explanation:
This is because at the point of contact with Block B, which is electrically positive, the electrons in Block A will be attracted to the excess 'unpaired' protons in block B. Hence, the electrons will flow into Block B causing unpaired protons to remain in Block A.
This process is called Charging by Conduction.
This charging process will continue until the charges are evenly distributed between both objects.
In case you're wondering, "<em>how's all this possible within a few seconds</em>?", remember that electrons travel very fast and so, this process is a rather rapid one.