Answer: any answer choices
Explanation:
When using ion-selective electrodes, to compensate for a complex or unknown matrix, the standard addition method can be used to determine the analyte concentration. Option D
<h3>What are ion-selective electrodes?</h3>
Analytical chemistry is a science that deal with the measurement and detection of the accurate amount of a substance. Analytical chemistry plays a large role in environmental management as it helps in the determination of the levels of contaminants in a sample.
An ion selective electrode is used in analytical chemistry to measure the amount of a target ion by converting its activity into a measurable electrical signal.
Hence, when using ion-selective electrodes, to compensate for a complex or unknown matrix, the standard addition method can be used to determine the analyte concentration.
Learn more about ion-selective electrodes:brainly.com/question/14987024
#SPJ1
Answer:
Hey hi
Explanation:
Can you pls tell me which language is this.... Pls really sorry... I wanna help you
It's simple, just follow my steps.
1º - in 1 L we have

of

2º - let's find the number of moles.



3º - The concentration will be

But we have this reaction

This concentration will be the concentration of

![K_{sp}=\frac{[Ba^{2+}][CO_3^{2-}]}{[BaCO_3]}](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5Cfrac%7B%5BBa%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D%7D%7B%5BBaCO_3%5D%7D)
considering
![[BaCO_3]=1~mol/L](https://tex.z-dn.net/?f=%5BBaCO_3%5D%3D1~mol%2FL)
![K_{sp}=[Ba^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BBa%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
and
![[Ba^{2+}]=[CO_3^{2-}]=5.07\times10^{-5}~mol/L](https://tex.z-dn.net/?f=%5BBa%5E%7B2%2B%7D%5D%3D%5BCO_3%5E%7B2-%7D%5D%3D5.07%5Ctimes10%5E%7B-5%7D~mol%2FL)
We can replace it


Therefore the

is:
First. moles is just a label for a number of things. just like a
dozen = 12, a gross = 144, a mole = 6022 with another 20 zeros after the
2
next
moles = mass / molecular weight.
molecular weight = sum of atomic mass from the periodic table
atomic mass MnO2 = atomic mass Mn + 2 x atomic mass O
= 54.94 + 2 x 16 = 86.94 g/mole
so moles MnO2 = 98.0 grams / (86.94 g/mole) = 1.13 moles
notice that I only gave 3 digits? that because of sig figs read the link below if you don't understand....
mw C5H12 = 5 x 12 + 12 x 1 = 72 g/mole
so moles C5H12 = 12.0 g / 72.0 g/mole = 0.167 moles
mw XeF6 = 131.3+ 6 x 19.00 = 245.3
so moles XeF6 = 100 g / 245.3 g/mole = 0.4077 moles
I've also provided a link to a periodic table. if you need atomic weights click on any element and it will give you the
details.