A. They are the most destructive earthquake waves.
D. They can move in a rolling pattern through rock, like an ocean wave.
Explanation:
Surface waves are seismic waves that cause the most destruction during an earthquake.
Rayleigh waves are known to cause rolling pattern of rocks just like an ocean waves.
- Seismic waves are elastic waves that notably transmits energy.
- They usually accompany earthquakes.
- There are two broad categories of these waves.
- Surface and body waves.
- Seismic surface waves are low frequency and long wavelength waves.
- They travel very close to the surface.
- They are made up of Love and Rayleigh waves.
- Love waves travels laterally in a horizontal fashion.
- Rayleigh waves rolls like ocean waves in the ground.
- The bulk of the destruction caused during an earthquakes is due to these waves.
- They are the last waves to arrive a seismic station
learn more:
Seismograph brainly.com/question/11292835
#learnwithBrainly
i think the answer is B. They have low reactivity.Hope this helped (:
The two main types of chemical bonds are ionic and covalent bonds. An ionic bond essentially donates an electron to the other atom participating in the bond, while electrons in a covalent bond are shared equally between the atoms. The only pure covalent bonds occur between identical atoms.
Answer:
a) 1,6%
b) 64,775 g/mol
c) 3,6×10⁻² M
d) 2,3×10⁻³ g/mL
Explanation:
a) The mass fractium of helium is obtained converting the moles of the four gases to grams with molar weight and then caculating of the total of grams how many are of helium, thus:
- Helium: 0,25 moles ×
= 1 g of Helium - Argon: 0,25 moles ×
= 10 g of Argon - Krypton: 0,25 moles ×
= 20,95 g of krypton - Xenon: 0,25 moles ×
= 32,825 g of Xenon
Total grams: 1g+10g+20,85g+30,825g= 62,675 g
Mass fraction of helium:
× 100 = <em>1,6%</em>
<em />
<em>The mass fraction of Helium is 1,6%</em>
<em />
<em>b)</em><em> </em>Because the mole fraction of all gases is the same the average molecular weight of the mixture is:
= 64,775 g/mol
c) The molar concentration is possible to know ussing ideal gas law, thus:
= M
Where:
P is pressure: 150 kPa
R is gas constant: 8,3145
T is temperature: 500 K
And M is molar concentration. Replacing:
M = 3,6×10⁻² M
d) The mass density is possible to know converting the moles of molarity to grams with average molecular weight and liters to mililiters, thus:
3,6×10⁻²
×
×
=
2,3×10⁻³ g/mL
I hope it helps!