The correct answer for the question that is being presented above is this one: "A. The accepted model of the atom was changed.<span>" </span>J J Thomson discovered the electrons and performed experiment using the cathode ray tube
Here are the following choices:
<span>A. The accepted model of the atom was changed.
B. The accepted model of the atom was supported.
C. Cathode ray tubes were no longer used in experiments due to poor results.
D. Cathode ray tubes became the only instrument of use in the study of atoms</span>
Answer:
87.3 calories of heat is required.
Explanation:
Heat = mcΔT
m= mass, c = specific heat of silver, T = temperature
H= 57.8 g * 0.057 cal/g°C * ( 43.5 - 17 °C)
H = 57.8 * 0.057 * 26.5
H = 87.3069 cal.
The heat required to raise the temperature of 57.8 g of silver from 17 °C to 43.5 °C is 87.3 calories.
Answer:
C. More NO2 and SO2 will form
Explanation:
Le Chatelier's Principle : It predicts the behavior of equilibrium due to change in pressure , temperature , volume , concentration etc
It states that When external changes are introduced in the equilibrium then it will shift the equilibrium in a direction to reduce the change.
In given Reaction SO3 is introduced(increased) .
So equilibrium will shift in the direction where SO3 should be consumed(decreased)
Hence the equilibrium will go in backward direction , i.e

So more and more Of NO2 and SO2 will form
Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).