Recall the double angle identity for cosine:

It follows that

Since 0° < 22° < 90°, we know that sin(22°) must be positive, so csc(22°) is also positive. Let x = 22°; then the closest answer would be C,

but the problem is that none of these claims are true; cot(32°) ≠ 4/3, cos(44°) ≠ 5/13, and csc(22°) ≠ √13/2...
The volume of a cone is V=(1/3)(area of the base)(height)= (1/3)(pi*r^2)(h)
r^2= (d/2)^2 = (d^2)/4. Given: V= 301.44cm^3 and h= 18cm.
r^2= V/[(1/3)(pi)(h)]
r^2= 3V/(pi)(h)
(d^2)/4= 3(301.44)/(3.14)(18)
d^2= 12(301.44)/(3.14)(18)
d^2= 63.967
d= 7.997
d~= 8cm.
Answer:
27
Step-by-step explanation:
If we follow the amount of players called,
Coach called three/3
Players called three/3
Three players called three/3
And make it into a equation, 1 x 3 = 3
Those three people call three more: 3 x 3 = 9
Those nine people call three more: 9 x 3 = 27
Answer:
first blank is "rhombus"
second blank is "rectangle"
third blank is "are congruent"
Step-by-step explanation:
Answer:
<h2><u>E</u><u>k</u>sponent</h2>
![\sf{ \large{ \boxed{ \red{ {a}^{ \frac{n}{m} } = \sqrt[m]{ {a}^{n} } } } }}](https://tex.z-dn.net/?f=%20%20%5Csf%7B%20%5Clarge%7B%20%5Cboxed%7B%20%5Cred%7B%20%7Ba%7D%5E%7B%20%5Cfrac%7Bn%7D%7Bm%7D%20%20%7D%20%20%3D%20%20%5Csqrt%5Bm%5D%7B%20%7Ba%7D%5E%7Bn%7D%20%7D%20%7D%20%7D%20%7D%7D)

![= \sqrt[3]{ {2}^{4} }](https://tex.z-dn.net/?f=%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B2%7D%5E%7B4%7D%20%7D%20)
![= \sqrt[3]{2 \times 2 \times 2 \times 2}](https://tex.z-dn.net/?f=%20%3D%20%20%20%5Csqrt%5B3%5D%7B2%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%202%7D%20)
![= \boxed {\bold{\sqrt[3]{16}(c.) }}](https://tex.z-dn.net/?f=%20%3D%20%20%20%5Cboxed%20%20%7B%5Cbold%7B%5Csqrt%5B3%5D%7B16%7D%28c.%29%20%7D%7D)