Compaction and cementation
Answer:
191.6 g of CaCl₂.
Explanation:
What is given?
Mass of HCl = 125.9 g.
Molar mass of CaCl₂ = 110.8 g/mol.
Molar mass of HCl = 36.4 g/mol.
Step-by-step solution:
First, we have to state the chemical equation. Ca(OH)₂ react with HCl to produce CaCl₂:

Now, let's convert 125.9 g of HCl to moles using the given molar mass (remember that the molar mass of a compound can be found using the periodic table). The conversion will look like this:

Let's find how many moles of CaCl₂ are being produced by 3.459 moles of HCl. You can see in the chemical equation that 2 moles of HCl reacted with excess Ca(OH)₂ produces 1 mol of CaCl₂, so we state a rule of three and the calculation is:

The final step is to find the mass of CaCl₂ using the molar mass of CaCl₂. This conversion will look like this:

The answer would be that we're producing a mass of 191.6 g of CaCl₂.
Answer:
Balanced chemical equation:
NO₂ + NO₃ → N₂O₅
Explanation:
Chemical equation:
NO₂ + NO₃ → N₂O₅
Balanced chemical equation:
NO₂ + NO₃ → N₂O₅
Nitrogen trioxide gas combine with nitrogen dioxide gas and form nitrogen pentoxide.
This is the simple synthesis reaction in which two substance combine to form a new substance.
Synthesis reaction:
It is the reaction in which two or more simple substance react to give one or more complex product.
General chemical equation:
A + B → AB
A and B are reactants that combine to form AB product.
Answer:
See explanation and image attached
Explanation:
The standard cell potential at 298 K is given by;
E°cathode - E°anode
Hence;
E°cell = 0.34 V - (-0.76 V)
E°cell = 0.34 V + 0.76 V
E°cell = 1.1 V
To reduce Zn^2+ to Zn then Zn must be the cathode, hence;
E°cell = (-0.76 V) - 0.34 V
E°cell = -1.1 V
Petrified fossils, they are made of wood that becomes petrified from pressure and lack of oxygen.