Answer:
<em>D. One negative charge</em>
Explanation:
During the formation of a bond, if an atom gains an electron, after that it will be left with a negative charge compared to the atom before the bond is formed. This is because in these types of bonds, which are <em>ionic bonds</em>, there is a <em>transfer of electrons between atoms</em>, there will be one or more atoms that yield electrons that will be captured by another and other atoms that gain them, and the difference of charges produced by this transfer of electrons, will cause the union to occur due to the attraction between electrostatic forces.
If you have a neutral atom before joining, and it gains an electron to form a bond,<em> it will have one electron more than its initial state</em> (in the initial state, the number of protons and electrons is the same, because the atoms they are electrically neutral), so having an extra electron will make it have a negative charge, since there will be a difference between the number of protons and electrons that the atom possesses. <em>This is why the correct answer is D.
</em>
In the case of <em>response A and B</em>, <em>the atom could only remain positively charged if it loses electrons</em>, but as in this case it wins, <em>they are not correct</em>.
<em>The answer C is also not correct</em> because only one electron wins, so that it is left with two negative charges, <em>it should gain two electrons during the bond formation.</em>
Answer:
Attached below
Explanation:
Free energy of mixing = ΔGmix = Gf - Gi
attached below is the required derivation of the
<u>a) Molar Gibbs energy of mixing</u>
ΔGmix = Gf - Gi
hence : ΔGmix = ∩RT ( X1 In X1 + X2 In X2 + X3 In X3 + ------- )
<u>b) molar excess Gibbs energy of mixing</u>
Ni = chemical potential of gas
fi = Fugacity
N°i = Chemical potential of gas when Fugacity = 1
ΔG = RT In ( a2 / a1 )
I literally hate chem but I think it’s ionic, I’m not not completely sure but it kinda sounds about right . Not the best anwser haha hope it kinda helps lol
Answer:
Molecular formula
Explanation:
Molecular formula in the first place is required to understand which compound we have. We then should refer to the periodic table and find the molecular weight for each atom. Adding individual molecular weights together would yield the molar mass of a compound.
Then, dividing the total molar mass of a specific atom by the molar mass of a compound and converting into percentage will provide us with the percentage of that specific atom.
E. g., calculate the percent composition of water:
- molecular formula is
; - calculate its molar mass: [tex]M = 2M_H + M_O = 2\cdot 1.00784 g/mol + 16.00 g/mol = 18.016 g/mol;
- find the percentage of hydrogen: [tex]\omega_H = \frac{2\cdot 1.00784 g/mol}{18.016 g/mol}\cdot 100 \% = 11.19 %;
- find the percentage of oxygen: [tex]\omega_O = \frac{16.00 g/mol}{18.016 g/mol}\cdot 100 \% = 88.81 %.
Answer:
A. 
B. 
Explanation:
Hello!
In this case, since the undergoing chemical reaction between nitrogen and hydrogen is:

Thus we proceed as follows:
A. Here, we first need to compute the moles of ammonia yielded by each reactant, in order to identify the limiting one:

Thus, since nitrogen yields the fewest moles of ammonia, we realize it is the limiting reactant, so the theoretical yield, in grams, of ammonia is:

B. Finally, since the actual yield of ammonia is 1.23, the percent yield turns out:

Best regards!