<span> Weight = mass x acceleration
Earths acceleration is 9.8 m/s*2
1 kg = 2.2 lbs, so 2.0 lbs x 1 kg/2.2 lbs = 0.91 kg
The bag would have a weight of 9.8 x 0.91 = 8.9 N
1. 8.9 x 1/6 = 1.5 N
2. 8.9 x 2.64 = 23.5 N
The mass of the bag at all three locations is 0.91 kg. Mass does not change, the different locations only change its weight. </span>
Answer:
Yes it is possible
Explanation:
When two equal magnitude forces are acting on the rod in opposite direction
Then the net force on the system is always zero in that case
so we will have

now for the system net torque due to these forces is given by

here we know that
= distance of the forces from reference about which torque is measured
so here we can say that net force is zero on the system while torque is not zero
in all such case object will rotate about a fixed position with change angular speed
The answer is C.) mass is the matter of an object
Answer:
d=0.137 m ⇒13.7 cm
Explanation:
Given data
m (Mass)=3.0 kg
α(incline) =34°
Spring Constant (force constant)=120 N/m
d (distance)=?
Solution
F=mg
F=(3.0)(9.8)
F=29.4 N
As we also know that
Force parallel to the incline=FSinα
F=29.4×Sin(34)
F=16.44 N
d(distance)=F/Spring Constant
d(distance)=16.44/120
d(distance)=0.137 m ⇒13.7 cm
Answer:
Explanation:
Give that,
Spring constant (k)=40N/m
Force applied =75N
Since the force is applied to the right, we don't know if it is compressing or stretching the spring
So let assume it compress
Using hooke's law
F=-ke
e=-F/k
Then, e=-75/40
e=-1.875m
The deformation is 1.875m.
Let assume it stretch
Using hooke's law
-F=-ke
e=F/k
Then, e=75/40
e=1.875m
The elongation is 1.875m