Answer:
So X has an atomic mass of 55.05 u, and is probably Mn
Explanation:
<u>Step1: </u>Balance the equation
XI2 +Cl2 → XCl2 + I2
<u>Step2:</u> find the molar mass of the compounds
<em><u>Compounds : </u></em>
X ⇒ Molar mass = M
XI2 ⇒ Molar mass = M + 2*126.9 u
XCl2 ⇒Molar mass = M + 2*35.45u
⇒For 1 mole XI2 we have 1 mole Cl2 reacting , as well as 1 mole XCl2 and 1 mole I2 produced.
<u>Step 3:</u> Calculating the atomic mass
(1.383g * XI2) / (M + 2*126.90 u) = (0.564g * XCl2) / ( M + 2 * 35.45u)
1.383 (M + 2 *35.45 u )= 0.564 (M + 2*126.90)
1.383M + 98.0547 = 0.564 M + 143.1432
1.383 M - 0.564 M =143.1432 - 98.0547
0.819 M = 45.0885
M = 55.05 u
So X has an atomic mass of 55.05 u ⇒ if we look at the periodic table we can find that the closest element is Manganese (Mn)
MnI2 + Cl2 → MnCl2 + I2
Answer:
Separation by density
Explanation:
Mixtures are made up of two or more pure substances which tends to keep their individual identities. These components can be separated from each other by different physical techniques.
Mixtures are further classified as;
(i) Homogenous Mixture:
In this type of the mixtures the components are uniformly mixed and their properties as well as composition as uniform throughout. Such mixtures are also called as solutions.
The physical methods used to separate these components from each other are distillation (taking heat and pressure into account), Solvent extraction, Magnetic separation, Chromatography e.t.c.
(ii) Homogenous Mixture:
In this type of the mixtures the components are not uniformly mixed and their physical properties and composition are also not uniform.
The physical methods used to separate these components from each other are Filtration, Magnetic Separation, Centrifugation, Flotation e.t.c.
So, in given options the density can play role by settling the massive components of heterogenous mixture to sit at the bottom and separated
Note: You are calculating mass which is determine the gram(g)
You will have to cancel out the mol
(28.97 g/mol) * mol will give grams by itself
Given the mass 3.33 moles of air
28.97 g/mol * 3.33 mol = 96.47 grams
Solution: 96.5 grams
To figure out questions related to reacting moles/masses, the first step is always to write a complete balanced equation.
2Fe (s) + 3Cl2 (g) → 2FeCl3 (s)
Since Cl2 is the excess reactant, and Fe is the limiting reactant, we can simply find the number of moles of the product by comparing the mole ratio of the limiting reactant to the mole ratio of the product from the equation.
From the equation, mole ratio of Fe:FeCl3 = 2:2 = 1:1, the number of moles of product is exactly the same as the number of moles of the limiting reactant, which makes it 8 moles.
Note that if the mole ratio is not 1:1, you have to do some calculations to make sure the no. of moles is balanced at the end. Which means, if the mole ratio happened to be 1:2, the no. of moles of the product would be 8x2=16 instead.
So, your answer is 8 moles.