Answer:
a. Minimum 1.70 V
b. There is no maximum.
Explanation:
We can solve this question by remembering that the cell potential is given by the formula
ε⁰ cell = ε⁰ reduction - ε⁰ oxidation
Now the problem states the cell must provide at least 0.9 V and that the reduction potential of the oxidized species 0.80 V, thus
ε⁰ reduction - ε⁰ oxidation ≥ ε⁰ cell
Since ε⁰ oxidation is by definition the negative of ε⁰ reduction , we have
ε⁰ reduction - ( 0.80 V ) ≥ 0.90 V
⇒ ε⁰ reduction ≥ 1.70 V
Therefore,
(a) The minimum standard reduction potential is 1.70 V
(b) There is no maximum standard reduction potential since it is stated in the question that we want to have a cell that provides at leat 0.9 V
Isotopes are variants atoms of the same element, having same number of atomic(proton) number but different number of neutrons and mass number.
Considering iron-60
- The atomic number which also equals the number of protons for the element iron as can be seen on the periodic table is 26
- The name iron-60 also tells us that this particlar isotope's mass number is 60.
- The chemical symbol for Iron is Fe
Now expressing as an isotope iron-60 becomes ⁶⁰₂₆Fe ( very unstable )
Other stable isotopes of Iron include ⁵⁴₂₆Fe , ⁵⁶₂₆Fe, ⁵⁷₂₆Fe and ⁵⁸₂₆Fe
See more here: brainly.com/question/11236150
Answer:
It will be reported too low.
Explanation:
To measure the specific heat of the metal (s), the calorimeter may be used. In it, the metal will exchange heat with the water, and they will reach thermal equilibrium. Because it can be considered an isolated system (there're aren't dissipations) the total amount of heat (lost by metal + gained by water) must be 0.
Qmetal + Qwater = 0
Qmetal = -Qwater
The heat is the mass multiplied by the specific heat multiplied by the temperature change. If c is the specific heat of the water:
m_metal*s*ΔT_metal = - m_water *c*ΔT_water
s = -m_water *c*ΔT_water / m_metal*ΔT_metal
So, if m_water is now less than it was supposed to be, s will be reported too low, because they are directly proportional.
Answer:
This is the balanced equation:
Pb(NO₃)₂ (aq) + 2NaI (aq) → 2NaNO₃ (aq) + PbI₂ (s) ↓
Explanation:
This are the reactants:
PbNO₃
NaI
Iodide can react to Pb²⁺ to make a solid compound.
71% of the earth is water and the 29% is continents and islands.