Answer:
the debt ratio remains the same
For this case, the first thing we must do is define variables.
We have then:
x: number of minutes
y: total cost
We write the algebraic expression that models the problem.
We have then:
![y = 10 * (\frac{20}{60}) x](https://tex.z-dn.net/?f=%20y%20%3D%2010%20%2A%20%28%5Cfrac%7B20%7D%7B60%7D%29%20x%20%20%20)
Simplifying we have:
![y = (\frac{10}{3}) x](https://tex.z-dn.net/?f=%20y%20%3D%20%28%5Cfrac%7B10%7D%7B3%7D%29%20x%20%20%20)
Then, by the time the cost is equal to $ 300 we have:
![300 = (\frac{10}{3}) x](https://tex.z-dn.net/?f=%20300%20%3D%20%28%5Cfrac%7B10%7D%7B3%7D%29%20x%20%20%20)
From here, we clear the value of x.
Answer:
an algebraic expression for the problem is:
![300 = (\frac{10}{3}) x](https://tex.z-dn.net/?f=%20300%20%3D%20%28%5Cfrac%7B10%7D%7B3%7D%29%20x%20%20)
1/5 (18-11) I believe this is what you mean?
-338 is the answer or you got no cookies <3