Answer:
207.4 N
Explanation:
The torque
on a body is
where r is the radius vector from the point of rotation to the point at which force F is applied.
The product of r and F is equal to the product of magnitude of r and F multiplied by the sine of angle between both vectors.
Therefore, torque is also given by
Where
is the angle between r and F.
Use the expression of torque.
Substitute L for r in the equation
Where L is the length of the wrench.
Making F the subject
Force required to pull the wrench is given as,
Substitute
for
, 25 cm for L, and 115o for
Answer:
Explanation:
The way to show a cubed substance is either like this³ or like this x^3. The small three is found at the bottom toolbar at the bottom of the question space marked by the Ω symbol.
100 mmHg
Givens
V1 = 20 cm^3
V2 = 80 cm^3
P1 = 400 mmHg
P2 = ?
Formula
V1 * P1 = V2 * P2
Solution
20 * 400 = 80 * P2 Divide by 80
20 * 400/80 = P2
P2 = 8000 / 80
P2 = 100 mmHg
Mechanical
waves are oscillation of matter, they are important because they all
transfer energy from one place to another. There are 2 types of
mechanical waves. A transverse wave where the particles vibrate
perpendicular to the direction of energy travel and a longitudinal
wave where particle vibrations are parallel to the direction of the
energy transfer.
I
hope it helps, Regards.
The equation for the de Broglie wavelength is:
<span>λ = (h/mv) √[1-(v²/c²)], </span>
<span>where h is Plank's Constant, m is the rest mass, v is velocity, and c is the velocity of light in vacuum. However, if c>>v (and it is, in this case) then the expression under the radical sign approaches 1, and the equation simplifies to: </span>
<span>λ = h/mv. </span>
<span>Substituting, (remember to convert the mass to kg, since 1 J = 1 kg·m²/s²): </span>
<span>λ = (6.63x10^-34 J·s) / (0.0459 kg) (72.0 m/s) = 2.00x10^-34 m.</span>