Answer:
a
Solid Wire
Stranded Wire 
b
Solid Wire
Stranded Wire
Explanation:
Considering the first question
From the question we are told that
The radius of the first wire is 
The radius of each strand is 
The current density in both wires is 
Considering the first wire
The cross-sectional area of the first wire is

= >
= >
Generally the current in the first wire is

=> 
=>
Considering the second wire wire
The cross-sectional area of the second wire is

=> 
=> 
Generally the current is

=> 
=> 
Considering question two
From the question we are told that
Resistivity is 
The length of each wire is 
Generally the resistance of the first wire is mathematically represented as
=>
=>
Generally the resistance of the first wire is mathematically represented as
=>
=>
Answer:
<h2>Electricity has many uses in our day to day life. It is used for lighting rooms, working fans and domestic appliances like using electric stoves, A/C and more. All these provide comfort to people. In factories, large machines are worked with the help of electricity.</h2>
Answer:
A) conductors
Explanation:
A conductor can be defined as any material or object that allows the free flow of current or electrons (charge) in one or more directions in an electrical circuit. Some examples of a conductor are metals, tungsten, copper, aluminum, iron, graphite, etc.
Basically, the main purpose of a conductor in physics is to provide a low-resistance path between electrical circuits or components. This low-resistance path is to ensure that the electrical components allows the free flow of electrons and thus, enabling charge transfer.
Hence, the electrons in conductors move about more freely than the electrons in insulators which is why this type of material can be used to create electric circuits because it would significantly provide a low-resistance path between the electric circuits.
Answer:
F = 352 N
Explanation:
we know that:
F*t = ΔP
so:
F*t = M
-M
where F is the force excerted by the wall, t is the time, M the mass of the ball,
the final velocity of the ball and
the initial velocity.
Replacing values, we get:
F(0.05s) = (0.8 kg)(11m/s)-(0.8 kg)(-11m/s)
solving for F:
F = 352 N
Add then divide the hint clearly backs it up two so yeahh