Answer:
Explanation:
When the springs are connected end to end, it means they are connected in series. When the springs are connected in series, the stress applied to the system gets applied to each of the springs without any change in magnitude while the strain of the system is the sum total of strains of each spring. The spring constant of the resultant system is given as,
Here, n = 10
Spring constant of each spring = k
Thus,
The question is incomplete. I can help you by adding the information missing. They want you to calculate a) the radius of the cyclotron orbit for an electron with speed 1.0 * 10^6 m/s^2 and b) the radius of a cyclotron orbit for a proton with speed 5.0 * 10^4 m/s.
The two tasks involve combining the equations of the magnectic force and the centripetal force in a circular motion.
When you do that, you will obtain an expression to find the radius of the circular motion, which is the radius of the cyclotron that impulses the particles.
a)
Magentic force, F = q*v*B
q is the charge of the electron = 1.6 * 10^ -19 C
v is the speed = 1.0 * 10 ^ 6 m/s
B is the magentic field = 5.0 * 10 ^-5 T
Centripetal force, F = m*Ac = m * v^2 / R
where,
Ac = centripetal acceleration
m = mass of the electron = 9.11 * 10 ^-31 kg
R = the radius of the orbit
Now equal the two forces: q*v*B = m * v^2 / R => R = m*v / (q*B)
=> R = (9.11 * 10^31 kg) (1.0*10^6m/s) / [ (1.6 * 10^-19C)* (5.0 * 10^-5T) ]
=> R = 0.114 m
b) The equations are the same, just now use the speed, charge and mass of the proton instead of those of the electron.
R = m*v / (qB) = (1.66*10^-27 kg)(5.0*10^4 m/s) / [(1.6*10^-19C)(5*10^-5T)]
=> R = 10.4 m
Answer:
✓ Ion
Explanation:
Which term BEST describes the form of beryllium shown? Protons=4 Neutrons=5 Electrons=2
✓ Ion
Answer:
20 N
Explanation:
In air, the normal force is equal to the weight.
∑F = ma
N − mg = 0
N = mg
Submerged in water, the normal force is equal to the weight minus the buoyant force:
∑F = ma
B + N − mg = 0
N = mg − B
Plugging in values:
80 N = 100 N − B
B = 20 N