Answer:
37.125 m
Explanation:
Using the equation of motion
s=ut+0.5at^{2} where s is distance, u is initial velocity, t is time and a is acceleration
<u>Distance during acceleration</u>
Acceleration, a=\frac {V_{final}-V_{initial}}{t} where V_{final} is final velocity and V_{initial} is initial velocity.
Substituting 0.0 m/s for initial velocity and 4.5 m/s for final velocity, acceleration will be
a=\frac {4.5 m/s-0 m/s}{4.5 s}=1 m/s^{2}
Then substituting u for 0 m/s, t for 4.5 s and a for 1 m/s^{2} into the equation of motion
s=0*4.5+ 0.5*1*4.5^{2}=0+10.125
=10.125 m
<u>Distance at a constant speed</u>
At a constant speed, there's no acceleration and since speed=distance/time then distance is speed*time
Distance=4.5 m/s*6 s=27 m
<u>Total distance</u>
Total=27+10.125=37.125 m
Answer:
x = 2.044 m
Explanation:
given data
initial vertical component of velocity = Vy = 2sin18
initial horizontal component of velocity = Vx = 2cos18
distance from the ground yo = 5m
ground distance y = 0
from equation of motion


solving for t
t = 1.075 sec
for horizontal motion

x = 2cos18*1.075
x = 2.044 m
Acceleration is any change in speed or direction of motion.
The dimension of speed is [length/time],
so a change is [length/time²].
Popular units include [meter/second²] and [feet/second²] .
________________________
Direction almost always boils down to an angle, (which technically
has no dimensions), so a change in direction is [angle/time] .
Popular units include [radian/second] and [degree/second] .
Hope this helps, if you need clarification i got you