Answer:
false statement : b ) For the motion of a cart on an incline plane having a coefficient of kinetic friction of 0.5, the magnitude of the change in kinetic energy equals the magnitude of the change in gravitational potential energy
Explanation:
mechanical energy = potential energy + kinetic energy = constant
differentiating both side
Δ potential energy + Δ kinetic energy = 0
Δ potential energy = - Δ kinetic energy
first statement is true.
Friction is a non conservative force so inter-conversion of potential and kinetic energy is not possible in that case. In case of second option, the correct relation is as follows
change in gravitational potential energy = change in kinetic energy + work done against friction .
So given 2 nd option is incorrect.
In case of no change in gravitational energy , work done is equal to
change in kinetic energy.
Answer:
an artificial body placed in orbit around the earth or moon or another planet in order to collect information or for communication.
Explanation:
Look it up on google
Answer:
Explanation:
Notice that this is a circuit with resistors R1 and R2 in parallel, connected to resistor R3 in series. It is what is called a parallel-series combination.
So we first find the equivalent resistance for the two resistors in parallel:
By knowing this, we can estimate the total current through the circuit,:
So approximately 0.17 amps
and therefore, we can estimate the voltage drop (V3) in R3 uisng Ohm's law:
So now we know that the potential drop across the parellel resistors must be:
10 V - 4.28 V = 5.72 V
and with this info, we can calculate the current through R1 using Ohm's Law:
Divide 24 by 12.
24/t = 12
24/12 = t
24/12 = 2
t = 2