Answer:
Tmax= 46.0 lb-in
Explanation:
Given:
- The diameter of the steel rod BC d1 = 0.25 in
- The diameter of the copper rod AB and CD d2 = 1 in
- Allowable shear stress of steel τ_s = 15ksi
- Allowable shear stress of copper τ_c = 12ksi
Find:
Find the torque T_max
Solution:
- The relation of allowable shear stress is given by:
τ = 16*T / pi*d^3
T = τ*pi*d^3 / 16
- Design Torque T for Copper rod:
T_c = τ_c*pi*d_c^3 / 16
T_c = 12*1000*pi*1^3 / 16
T_c = 2356.2 lb.in
- Design Torque T for Steel rod:
T_s = τ_s*pi*d_s^3 / 16
T_s = 15*1000*pi*0.25^3 / 16
T_s = 46.02 lb.in
- The design torque must conform to the allowable shear stress for both copper and steel. The maximum allowable would be:
T = min ( 2356.2 , 46.02 )
T = 46.02 lb-in
Answer:
William Shockley, Walter Houser Brattain and John Bardeen.
Explanation:
It was built in 1947 and they won the novel peace prize in 1956
Answer:
#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
int main() {
string name[5];
int age[5];
int i,j;
for ( i = 0; i<=4; i++ ) {
cout << "Please enter student's name:";
cin >> name[i];
cout << "Please enter student's age:";
cin >> age[i];
}
for (i=0;i<=4;i++){
cout<<"Age of "<< name[i]<<" is "<<age[i]<<endl;
}
}
Output of above program is displayed in figure attached.
Answer:
a. true
Explanation:
Firstly, we need to understand what takes places during the compression process in a quasi-equilibrium process. A quasi-equilibrium process is a process in during which the system remains very close to a state of equilibrium at all times. When a compression process is quasi-equilibrium, the work done during the compression is returned to the surroundings during expansion, no exchange of heat, and then the system and the surroundings return to their initial states. Thus a reversible process.
While for a non-quasi equilibrium process, it takes more work to move the piston against this high-pressure region.