To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
P2 = P1V1/V2
P2 = 740mmhg x 19 mL / 30 mL
<span>P2 = 468.67 mmHg = 0.62 atm</span>
Answer:
I guess you just answered a lot of questions
Explanation:
Thanks for the points btw :)
<h3><u>Answer;</u></h3>
Cellulose
<h3><u>Explanation</u>;</h3>
- Cellulose is a polysaccharide and the most abundant organic compound on the Earth's surface.
- <em><u>It is an important organic molecule due to its strong structure which provides a wide variety of functions. </u></em>
- <em><u>Cellulose is a major component of tough cell walls that surround plant cells and is what makes plant stems, leaves, and branches very strong.</u></em>
- The molecules of cellulose are arranged such that they are parallel to each other joined by hydrogen bond. this arrangement forms long structures that combine with other cellulose molecules producing a strong support structure.
Answer:
ITS THE LAST ONE AND THE SECOND ONE
Explanation:
Answer: 0.075
Explanation:
(concentration in molarity)(volume in liter) = answer
0.15 mol/L *0.500L = 0.075 mol