Explanation:
If you bring an unopened bag of potato chips aboard an airplane you'll notice that the bag puffs up as the plane ascends to a higher altitude explain why this happens using the information and terminology you learned in this module
Answer:
Wind direction is determined with a wind vane.
Hope it will help :)
Answer:
237.8L of water would need to be added.
Explanation:
The first thing to do is to identify that the equation to be used is M1V1=M2V2. (This equation works because it turns everything into moles which can then be compared).
Then figure out what information you have and what is being found. In this case:
M1 = 54.7 M
V1 = 1092 mL = 1.092 L
M2 = 0.25 M
V2 = unknown
Then solve the equation for whatever you are trying to find.
M1V1=M2V2
V2=M1V1/M2
Now you need to plug everything in.
V2=(54.7M*1.091L)/0.25M
V2=238.93L
That means that the solution needs a volume of 238.7L to gain a molarity of 0.25M but the starting solution already had a volume of 1.092 L meaning that to find the amount of solvent that needs to be added you just subtract the starting volume by the volume that the solution needs to be.
238.93L - 1.091L = 237.8L
Therefore the answer is that 237.8L needs to be added to a 1.092L 54.7M NaCl solution to make the concentration 0.25M.
I hope this helps. Let me know if anything is unclear.
All inside and out in the human body
Answer:
A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are metalloids. Despite the lack of specificity, the term remains in use in the literature of chemistry.
A series of six elements called the metalloids separate the metals from the nonmetals in the periodic table. The metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. These elements look metallic; however, they do not conduct electricity as well as metals so they are semiconductors. They are semiconductors because their electrons are more tightly bound to their nuclei than are those of metallic conductors. Their chemical behavior falls between that of metals and nonmetals. For example, the pure metalloids form covalent crystals like the nonmetals, but like the metals, they generally do not form monatomic anions. This intermediate behavior is in part due to their intermediate electronegativity values. In this section, we will briefly discuss the chemical behavior of metalloids and deal with two of these elements—boron and silicon—in more detail.
Explanation:
i hope this helps you :)