write the equation for the reaction
that is 6 F2 +P4 =4 PF3
find the theoretical mass that is
let the theoretical yield be represented by y
theoretical yield = 78.1/100 = 120/y
y= 153.6 grams
find the number of moles of PF3
moles = mass/molar mass
= 153.6/87.97 =1.746 moles
by use of mole ratio between F2 :PF3 which is 6:4 the moles of F2 is therefore= 1.746 x 6/4 = 2.62 moles
mass = moles x molar mass
= 1.746 moles x38 g/mol = 99.6 grams
Answer:
Chemical bonds are the electrical forces of attraction that hold atoms or ions together to form molecules. Different types of chemical bonds and their varying intensity are directly responsible for some of the physical properties of minerals such as hardness, melting and boiling points, solubility, and conductivity.
Explanation:
The balanced equation is
4Fe+3O₂⇒2Fe₂O₃
We know that the mole of Fe₂O₃ is 6, and since the ratio between oxygen and <span>Fe₂O₃ is 3:2, we can see that
3:2 = x:6 (3 oxygen moles can make 2 </span>Fe₂O₃ moles = x oxygen moles can make 6 <span>Fe₂O₃ moles)
</span><span>
Multiply outside and inside (3*6 , 2*x) and put them on opposing sides of the equation
2*x = 3*6
2x=18
x=9
Therefore 9 moles of oxygen is needed.
</span>
PH=-log[H⁺]
pH=-log(1.87×10⁻¹³)
pH=12.72
I hope this helps. Let me know if anything is unclear.
Answer: Option (B) is the correct answer.
Explanation:
As the given reaction is as follows.
Equilibrium constant for this reaction will be as follows.
![K_{c} = \frac{[CO_{2}]}{[CO]^{2}}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCO_%7B2%7D%5D%7D%7B%5BCO%5D%5E%7B2%7D%7D)
According to Le Chatelier's principle, when we increase the temperature then the equilibrium will shift towards the right hand side.
As a result, concentration of carbon dioxide will decrease whereas concentration of carbon monoxide will increase.
Thus, we can conclude that in the given reaction equilibrium constant for this reaction will decrease with increasing temperature.