Answer:
(a): The car's relative position to the base of the cliff is x= 32.52m.
(b): The lenght of the car in the ir is tfall= 1.78 sec.
Explanation:
Vo= 0
V= ?
d= 50m
h= 30m
a= 4 m/s²
t= √(2*d/a)
t= 5 sec
V= a*t
V= 20 m/s
Vx= V * cos(24º)
Vx= 18.27 m/s
Vy= V* sin(24º)
Vy= 8.13 m/s
h= Vy*t + g*t²/2
clearing t:
tfall= 1.78 sec (b)
x= Vx * tfall
x= 32.52 m (a)
This is the answer to Question 5
(50 gal / 5 min) x (.0037854 m³/gal) x (1 min / 60 sec)
= (50 · 0.0037854 · 1) / (5 · 60) m³/sec
= 0.000631 m³/sec
Answer:
0.015 m/s2
Explanation:
Using Newtons 2nd law.
F = ma where F = Force applied, m = mass of the object and a = acceleration acquired.
So substitute the values in SI units.
m =
kg
Therefore F = 0.003×5 = 0.015 m/s2
<em>Quantities that determine the kinetic energy of a body are its </em><em>mass and velocity </em>
Answer: <em>mass and velocity </em>
Explanation:
The kinetic energy of a body is the energy possessed by an object by virtue of its motion. It is given by the equation

Where m represents mass of the body and v represents its velocity.
Two bodies of equal velocity but different mass the heavier body will have greater kinetic energy. When an object is at rest its velocity is equal to zero. Thus its kinetic energy will be zero. Hence it can be concluded that only moving bodies have kinetic energy.
Stationary objects placed at a height possess potential energy which is the energy by virtue of their position or configuration. The total mechanical energy of a system is the sum of potential and kinetic energy.