Answer:
26.5 m/s
Explanation:
The tension in the string provides the centripetal force that keeps the toy in circular motion. So we can write:

where:
T is the tension in the spring
m = 0.50 kg is the mass of the toy
r = 1.0 m is the radius of the circle (the length of the string)
v is the speed of the toy
The maximum tension in the string is
T = 350 N
If we substitute this value into the equation, we find the maximum speed that the mass can have before the string breaks:

Each Celsius degree is the size of 1.8 Fahrenheit degrees. So you need dip your Fahrenheit thermometer into the sample, see where you're starting, and then warm it up to a temperature that reads (37.1 x 1.8) = 66.8 Fahreheit degrees higher.
Its to blury for me to see it