Answer: C = 0.014M
Explanation:
From n= m/M= CV
m =43.5 M= 148, V=850ml
43.5/148= C× 0.85
C= 0.35M
Applying dilution formula
C1V1=C2V2
C1= 0.35, V1= 25ml, C2=?, V2= 600ml
0.35× 25 = C2× 600
C2= 0.014M
Answer:
b. The molarity of the solution increases
Explanation:
The correct answer is option b, that is the molarity of the solution increases.
Because the molarity is the concentration of the solution and it is explained as the amount of solute in amount of solution.
Solution: is the solute dissolved in solvent.
So if we increases the amount of solute in solvent the concentration in terms of molarity of solution increases and if we increase amount of solvent or water then the concentration or molarity increases.
Suppose we have form a sugar solution of 1 L by adding 4 mole of sugar then what happen
Use the Molarity formula
Molarity = no. of moles / 1 L of solution
put values in the formula
Molarity = 4/ 1 L of solution = 4 M
So the molarity of solution is 4 now if we add 2 mole more sugar to the same amount of sugar and amount of solution remain the same
now the no. of moles of sugar = 6 mole
So,
Use the Molarity formula
Molarity = no. of moles / 1 L of solution
put values in the formula
Molarity = 6 mol / 1 L of solution = 6 M
So the correct option is b.
Name:<span> Polonium </span>
Symbol:<span> Po </span>
Atomic Number:<span> 84 </span>
Atomic Mass:<span> (209.0) amu </span>
Melting Point:<span> 254.0 °C (527.15 K, 489.2 °F) </span>
Boiling Point:<span> 962.0 °C (1235.15 K, 1763.6 °F) </span>
Number of Protons/Electrons:<span> 84 </span>
Number of Neutrons:<span> 125 </span>
Classification: Metalloid
Crystal Structure:<span> Monoclinic </span>
Density @ 293 K:<span> 9.4 g/cm</span>3
Color:<span> Unknown</span>
Atomic Structure<span> <span>
Number of Energy Levels: 6<span>
First Energy Level: 2
Second Energy Level: 8
Third Energy Level: 18
Fourth Energy Level: 32
Fifth Energy Level: 18
Sixth Energy Level: 6
does it help?</span></span></span>
Answer:

Explanation:
In order to answer this question, we need to be familiar with the law of freezing point depression. The law generally states that mixing our solvent with some particular solute would decrease the freezing point of the solvent.
This may be expressed by the following relationship:

Here:
is the change in the freezing point of the solvent given its initial and final freezing point temperature values;
is the van 't Hoff factor (i = 1 for non-electrolyte solutes and i depends on the number of moles of ions released per mole of ionic salt);
is the freezing point depression constant for the solvent;
is molality of the solute, defined as a ratio between the moles of solute and the mass of solvent (in kilograms).
We're assuming that you meant 1.7-molal solution, then:

Given ethylene glycol, an organic non-electrolyte solute:

The freezing point depression constant:

Initial freezing point of pure water:

Rearrange the equation for the final freezing point and substitute the variables:
