Answer:
Activating a glow stick is the example of a chemical change, as snapping one will cause a chemical reaction, causing the glow. All of the other options are physical changes because nothing new is formed. Hope this helps!
A. There is no movement
Hope this helps
2 <span>KOH +1 H3AsO4 →1 K2HAsO4 + 2 H2O</span>
Answer is: D. Na2SO4.
b(solution) = 0.500 mol ÷ 2.0 L.
b(solution) = 0.250 mol/L.
b(solution) = 0.250 m; molality of the solutions.
ΔT = Kf · b(solution) · i.
Kf - the freezing point depression constant.
i - Van 't Hoff factor.
Dissociation of sodium sulfate in water: Na₂SO₄(aq) → 2Na⁺(aq) + SO₄²⁻(aq).
Sodium sulfate dissociates on sodium cations and sulfate anion, sodium sulfate has approximately i = 3.
Sodium chloride (NaCl) and potassium iodide (KI) have Van 't Hoff factor approximately i = 2.
Carbon dioxide (CO₂) has covalent bonds (i = 1, do not dissociate on ions).
Because molality and the freezing point depression constant are constant, greatest freezing point lowering is solution with highest Van 't Hoff factor.
Answer:
The vapor pressure of the solution is 23.636 torr
Explanation:

Where;
is the vapor pressure of the solution
is the mole fraction of the solvent
is the vapor pressure of the pure solvent
Thus,
15.27 g of NaCl = [(15.27)/(58.5)]moles = 0.261 moles of NaCl
0.67 kg of water = [(0.67*1000)/(18)]moles = 37.222 moles of H₂O
Mole fraction of solvent (water) = (number of moles of water)/(total number of moles present in solution)
Mole fraction of solvent (water) = (37.222)/(37.222+0.261)
Mole fraction of solvent (water) = 0.993
<u>Note:</u> the vapor pressure of water at 25°C is 0.0313 atm
Therefore, the vapor pressure of the solution = 0.993 * 0.0313 atm
the vapor pressure of the solution = 0.0311 atm = 23.636 torr