Just find the energy of the <span>blueviolet light with a wavelength of 434.0 nm using the formula:
E = hc / lambda
E = energy
c= speed of light = 3 x 10^8 m/s
h = planck's constant = 6.6 x 10^{-34} m^2 kg / s
lambda = 434 nm = 434 x 10^{-9} m
Putting these values (with appropriate units) in the above formula :
we get: Energy, E = 4.5 x 10^{-19} J
E = 0.45 x 10^{-18} J
Now, the </span>minimum energy is 2.18×10^-{18} J but our energy is 0.45 x 10^{-18} J which is less.
<span>Means the electron will not be removed
</span>
Answer:

Explanation:
We are given the formula:

This is a molecular formula, because it contains nonmetals.
1. Name the first element
The first element is phosphorous (P). Since this is the first element and there is only one, we don't need a prefix.
2. Second element
The second element is chlorine (Cl). It has a subscript of 5, so we must add the prefix of <u>hepta</u>-.
- Phosphorous heptachlorine
Add the ending of -ide.
- Phosphorous heptachloride
The prefix used for the second element is hepta. The compound name is phosphorous heptachloride.
After 100years, sample is 250g
After 200 years, sample is 125g
After 300years, sample is 62.5 g
Pitch is sometimes defined as the fundamental frequency of a sound wave. For most practical purposes, this is fine, and pitch and frequency can be thought of as equivalent. On the other hand, for most practical purposes, amplitude can be thought of as volume.
However, technically, pitch and volume are human perceptions. Thus, our perception of pitch and volume are not solely based on frequency and amplitude respectively, but are based on a combination of both. Frequency overwhelming dictates perceived pitch, but amplitude also does have some small, small effect on our pitch perception, especially when it is very large. For example, a very loud sound can have a different perceived pitch than you would predict from its frequency alone.
Hope that helps!
Yes, Bobby is correct
Explanation:
Anomalously high boiling point of water is as a result of the intermolecular forces between the molecules of water.
The intermolecular forces found in water are the very strong hydrogen bonds. The bulk of the physical properties of matter are due to the intermolecular forces that they possess.
- Hydrogen bonds are stronger than van der waals forces and they are more effective in binding molecules together into larger units.
- Substances whose molecules join via hydrogen bonds have higher boiling points i.e lower volatility than those with van der waals forces.
- Hydrogen bond is actually an electrostatic attraction between hydrogen atom of none molecule and the electronegative atom(O or N or F) of a neighboring molecule.
Learn more:
Hydrogen bonds brainly.com/question/10602513
#learnwithBrainly