Ith air resistance acting on an object that has been dropped, the object will eventually reach a terminal velocity, which is around 53 m/s (195 km/h or 122 mph) for a human skydiver. ... (On the Moon, the gravitational acceleration is much less than on Earth, approximately 1.6 m/s2.)
Answer:
Explanation:
The same current flows through each part of a series circuit. The total resistance of a series circuit is equal to the sum of individual resistances. Voltage applied to a series circuit is equal to the sum of the individual voltage drops.
I = 0.33 A
= 330 mA
Capacity, P = I × t
= 2050/330
= 6.21 hours
Time, t = 6.21 hours.
Answer:
I dont get what your asking sorry boo
Explanation:
the man would only weigh 13.7 kg on the moon
hope i helped:)
The terminal speed of the marble is 0.588 m/s.
<h3>Calculation:</h3>
We know that,
F = mg ......(1)
where,
F = force
m = mass
g = acceleration due to gravity
Also,
v = F/k ......(2)
where,
v = terminal speed
k = proportionality constant
Substituting the value of F from equation (1) in equation (2)
v = mg/k .......(3)
Given,
m = 30 g = 0.030 kg
k = 0.500 kg/s
g = 9.8 m/s²
To find,
v =?
Put the values in equation (3)
v = mg/k
v = 0.03(9.8)/ 0.500
= 0.294/0.500
= 0.588 m/s
Hence, the terminal speed of the marble is 0.588 m/s.
Learn more about calculation of force here:
brainly.com/question/15562875
#SPJ4
.