Answer:
1.) Waves carry energy through empty space or through a medium without transporting matter. While all waves can transmit energy through a medium, certain waves can also transmit energy through empty space. ... When waves travel through a medium, the particles of the medium are not carried along with the wave.
2.) Mechanical Waves are waves which propagate through a material medium (solid, liquid, or gas) at a wave speed which depends on the elastic and inertial properties of that medium. There are two basic types of wave motion for mechanical waves: longitudinal waves and transverse waves. Longitudinal waves vibrating in the direction of propagation while Transverse waves vibrate at right angles to the direction of its propagation.
3.) They can carry a little energy or a lot of energy. They can be transverse or longitudinal. However, all waves have common properties—amplitude, wavelength, frequency, and speed. Amplitude describes how far the medium in a wave moves.
I hope this helps!
Answer:
he kinetic energy increases on the descent, being maximum at the lowest point of the trajectory.
Explanation:
In these semicircular sections the skaters slide from one side to the other, in the downward path their kinetic energy increases and their potential energy decreases; When it leaves the ramp and is in the air, the kinetic energy decreases rapidly, up to the point of maximum height where the kinetic energy is zero.
Consequently, the kinetic energy increases on the descent, being maximum at the lowest point of the trajectory.
Answer:
The function is x = e^(-t/2) * (0.792*sin12t + 5cos12t)
Explanation:
we have to:
m = mass = 4 kg
k = spring constant = 577 N/m
c = damping constant = 4 N*s/m
The differential equation of motion is equal to:
m(d^2x/dt^2) + c(dx/dt) + k*x = 0
Replacing values:
4(d^2x/dt^2) + 4(dx/dt) + 577*x = 0
Thus, we have:
4*x^2 + 4*x + 577 = 0
we will use the quadratic equation to solve the expression:
x = (-4 ± (4^2 - (4*4*577))^1/2)/(2*4) = (-4 ± (-9216))/8 = (1/2) ± 12i
The solution is equal to:
x = e^(1/2) * (c1*sin12t + c2*cos12t)
x´ = (-1/2)*e^(1/2) * (c1*sin12t + c2*cos12t) + e^(-t/2) * (12*c1*cos12t - 12*c2*sin12t)
We have the follow:
x(0) = 5
e^0(0*c1 + c2) = 5
c2 = 5
x´(0) = 7
(-1/2)*e^0 * (0*c1 + c2) + e^0 * (12*c1 - 0*c2) = 7
(-1/2)*(5) + 12*c1 = 7
Clearing c1:
c1 = 0.792
The function is equal to:
x = e^(-t/2) * (0.792*sin12t + 5cos12t)
Answer:Explanation: According to Newton's third law, the force exerted by the bat hitting the ball will be equal in magnitude but opposite in direction of the force the ball exerts on the bat. Generally, your arms are stiff when you hit the ball forward, so you will not feel the bat "recoiling".
Explanation: