The draw an inscribed polygon inside the circle, the very thing to do is to draw the circle. Thus, the answer is the fourth choice, "Place a point on your paper and then use a compass to construct a circle". After which, we can locate the vertices of the polygon in the circumference of the circle and connect them to make the polygon.
Hi there!
»»————- ★ ————-««
I believe your answer is:
c < 2
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻

⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
Answer:
The interest After 6 years is $ 79.03
Step-by-step explanation:
Given as :
The principal amount deposited in account = $ 700
The rate interest earn = 1.8 % per year
The Time period = 6 years
<u>From Compounded Method </u>
Amount = Principal × 
Or, Amount = $ 700 × 
Or, Amount = $ 700 × 
Or, Amount = $ 700 × 1.1129
∴ Amount = $ 779.03
Now , Interest = Amount - Principal
I.e Interest = $ 779.03 - $ 700 = $ 79.03
Hence The interest After 6 years is $ 79.03 , Answer
We have to solve this equation:

Third degree polynomials like this one are not easily solved, but this one has a root at x = 0. The let us factorize this polynomial as x times a second degree polynomial:

Now we can find the roots of the quadratic polynomial as:
![\begin{gathered} x=\frac{-(-6)\pm\sqrt[]{(-6)^2-4\cdot1\cdot6}}{2\cdot1} \\ x=\frac{6\pm\sqrt[]{36-24}}{2} \\ x=\frac{6\pm\sqrt[]{12}}{2} \\ x=\frac{6\pm\sqrt[]{4\cdot3}}{2} \\ x=\frac{6\pm2\sqrt[]{3}}{2} \\ x=3\pm\sqrt[]{3} \\ x_1=3-\sqrt[]{3} \\ x_2=3+\sqrt[]{3} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B-%28-6%29%5Cpm%5Csqrt%5B%5D%7B%28-6%29%5E2-4%5Ccdot1%5Ccdot6%7D%7D%7B2%5Ccdot1%7D%20%5C%5C%20x%3D%5Cfrac%7B6%5Cpm%5Csqrt%5B%5D%7B36-24%7D%7D%7B2%7D%20%5C%5C%20x%3D%5Cfrac%7B6%5Cpm%5Csqrt%5B%5D%7B12%7D%7D%7B2%7D%20%5C%5C%20x%3D%5Cfrac%7B6%5Cpm%5Csqrt%5B%5D%7B4%5Ccdot3%7D%7D%7B2%7D%20%5C%5C%20x%3D%5Cfrac%7B6%5Cpm2%5Csqrt%5B%5D%7B3%7D%7D%7B2%7D%20%5C%5C%20x%3D3%5Cpm%5Csqrt%5B%5D%7B3%7D%20%5C%5C%20x_1%3D3-%5Csqrt%5B%5D%7B3%7D%20%5C%5C%20x_2%3D3%2B%5Csqrt%5B%5D%7B3%7D%20%5Cend%7Bgathered%7D)
Then, the solutions to the equation are:
x = 0
x = 3 - √3
x = 3 + √3
Answer:
4Joules
Step-by-step explanation:
According to Hooke's law which states that extension of an elastic material is directly proportional to the applied force provide that the elastic limit is not exceeded. Mathematically,
F = ke where
F is the applied force
K is the elastic constant
e is the extension
If a spring exerts a force of 6 N when stretched 3 m beyond its natural length, its elastic constant 'k'
can be gotten using k = f/e where
F = 6N, e = 3m
K = 6N/3m
K = 2N/m
Work done on an elastic string is calculated using 1/2ke².
If the spring is stretched 2 m beyond its natural length, the work done on the spring will be;
1/2× 2× (2)²
= 4Joules