Answer:
wavelength.
Explanation:
One complete expression of a waveform beginning at a certain point, progressing through the zero line to the wave’s highest (crest) and lowest (trough) points, and returning to the same value as the starting point is called a is called wavelength. Its can be also defined as the distance between two successive crests or trough points in wave form.
Answer:
b) R/4 (There seems to an error in mentioning the multiple choices of this question, please see below explanation of correct calculations for this question.)
Explanation:
dimension of the conductor before melting is l, r
reistivity is p
R=(p*l)/(pie*r2)
after reforming length is reduced to L=l/4
volume in both the cases will be same
i.e. pie * r^2 * l =pie * R^2 * L
r^2 * l = R^2 * (1/2)l
due to this radius will become R=sqrt(2) * r
now new reistance is given by Rx=(p * L)/(pie * R^2)
i.e. Rx=(p * l/2)/(pie * r^2 * 2)
after simplification RX=((p * l)/(pie * r^2))/4
i.e. Rx=R/4
Explanation:
We want to find the statement that is proven by the fact that the balls reach the same height.
A isn't supported by the evidence. Balls can reach the same height without having the same initial speed.
B isn't supported by the evidence. Balls can reach the same height without having the same launch angle.
C is supported. Projectiles spend the same amount of time going up as they do coming down, so if two projectiles reach the same height, then they must spend the same amount of time in the air.
D isn't supported by the evidence. Balls thrown at the same speed and complementary angles have the same range but different heights.
E isn't supported by the evidence. The mass of the ball doesn't affect the height.
Answer:
The acceleration of the electron is 1.457 x 10¹⁵ m/s².
Explanation:
Given;
initial velocity of the emitted electron, u = 1.5 x 10⁵ m/s
distance traveled by the electron, d = 0.01 m
final velocity of the electron, v = 5.4 x 10⁶ m/s
The acceleration of the electron is calculated as;
v² = u² + 2ad
(5.4 x 10⁶)² = (1.5 x 10⁵)² + (2 x 0.01)a
(2 x 0.01)a = (5.4 x 10⁶)² - (1.5 x 10⁵)²
(2 x 0.01)a = 2.91375 x 10¹³

Therefore, the acceleration of the electron is 1.457 x 10¹⁵ m/s².
Answer: 24.5 cm
Explanation:
Given
Force constant of spring, k = 40 N/m
Diameter of spring, d = 5.1 cm = 0.051 m
Mass of cylinder, m = 1.5 kg
Let us assume that the cylinder is hanging in such a way that the circular end is parallel with the water. Also, we assume that the tank water level is not materially affected by the displacement of the cylinder while the cylinder sinks. The water is fresh and as we all know, the density of water is 1000 kg/m³
To solve this, we assume x to be the spring extension and it's equivalent sinking distance(in meters). We then apply the formula,
mg = kx + ρgAx
mg = x(k + ρgA)
x = mg / (k + ρgA), where
A = πd²/4
A = (3.142 * 0.051²)/4
A = 0.0082 / 4
A = 0.00205 m²
x = 1.5 * 9.81 / [40 + (1000 * 9.81 * 0.00205)]
x = 14.715 / (40 + 20.1105)
x = 14.715 / 60.1105
x = 0.245 m
or 24.5 cm of stretch or sinking