Answer:
8.51 m/s
Explanation:
Velocity = Displacement/Time
Velocity = 400 m ÷ 47 s
<u>Velocity</u><u> </u><u>=</u><u> </u><u>8</u><u>.</u><u>5</u><u>1</u><u> </u><u>m</u><u>/</u><u>s</u>
<em>Kinetic Energy</em>
=><em><u>It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity.</u></em>
<em>Potential</em><em> </em><em>Energy</em><em> </em>
<u><em>=</em><em>></em><em>potential energy is the energy held by </em></u><em><u>an</u></em>
<em><u> object because of its position relative to </u></em><em><u>other</u></em>
<em><u> objects, stresses within itself, its </u></em><em><u>electric</u></em>
<em><u> charge, or other factors.</u></em>
<h2>Difference:</h2>
=>Potential energy is a <u>stored</u> energy on the other hand kinetic energy is the energy of an object or a system's particle in <em><u>Motion</u></em>.
Answer:
<em> think 2 also if not im so sorry but i think it is :)</em>
Answer: two waves with identical crests and troughs meet
Explanation:
My teacher gave me the answer
Answer:
Option (2)
Explanation:
From the figure attached,
Horizontal component, 
![A_x=12[\text{Sin}(37)]](https://tex.z-dn.net/?f=A_x%3D12%5B%5Ctext%7BSin%7D%2837%29%5D)
= 7.22 m
Vertical component, ![A_y=A[\text{Cos}(37)]](https://tex.z-dn.net/?f=A_y%3DA%5B%5Ctext%7BCos%7D%2837%29%5D)
= 9.58 m
Similarly, Horizontal component of vector C,
= C[Cos(60)]
= 6[Cos(60)]
= 
= 3 m
![C_y=6[\text{Sin}(60)]](https://tex.z-dn.net/?f=C_y%3D6%5B%5Ctext%7BSin%7D%2860%29%5D)
= 5.20 m
Resultant Horizontal component of the vectors A + C,
m
= 4.38 m
Now magnitude of the resultant will be,
From ΔOBC,

= 
= 
= 6.1 m
Direction of the resultant will be towards vector A.
tan(∠COB) = 
= 
= 
m∠COB = 
= 46°
Therefore, magnitude of the resultant vector will be 6.1 m and direction will be 46°.
Option (2) will be the answer.