<span>Energy exists as light, heat, sound, mass, moving objects, gravity, fuel, chemicals, and electricity.</span>
Before solving this question, first we have to understand the special theory of relative.
As per classical mechanics, the velocity of light will be different in different frame of reference. The light moves in the ether medium which exists every where in the entire universe.
Let us consider a body which moves with a velocity v. Let light is coming along the direction of the body. As per classical mechanics,the velocity of light with respect to the body will be [ c-v].
Let us consider that light is coming from opposite direction. Hence, the velocity of light with respect to the observer will be c+v.
From above we see that velocity of light is different in both the cases which is wrong.
As per Einstein's special theory of relativity, the velocity of light will be same in every frame of reference i.e c=300000 km/s.
As per the question ,the space craft is moving with a velocity 0.1 c.
We are asked to calculate the velocity of the light with respect to an observer present in Mars.
Considering Einstein's theory of relativity, the velocity of light will be c [300000 km/s] with respect to the person in Mars.
The total distance covered by the sound wave is twice the distance between the camera and the subject (because the wave has to reach the subject and then travel back to the camera), so 2L, where L=3.42 m. The speed of sound is v=343 m/s. It is a uniform linear motion, so we can use the basic relationship between space (S), time (t) and velocity (v) to find the time the wave needs to return to the camera:
The gravitational attractions are greatest be when the objects have large masses and they're closer together. Their sizes don't matter.