NASA’s Apollo Mission was the ONLY mission which landed humans on the moon, which it did six times. I’m not very sure about several times, though. Hope this helped!
-chrissydarling
Answer: a. F doubled
b. F reduced by one-quarter i.e
1/4*(F)
c. 1/9*(F)
d. F increased by a factor of 4 i.e 4*F
e. F reduces 3/4*(F)
Explanation: Coulombs law states the force F of attraction/repulsion experience by two charges qA and qB is directly proportional to thier product and inversely proportional to the square of distance d between them. That is
F = k*(qA*qB)/d²
a. If qA is doubled therefore the force is doubled since they are directly proportional.
b. If qA and qB are half, that means thier new product would be qA/2)*qB/2 =qA*qB/4
Which means the product of charge is divided by 4 so the force would be divided by 4 too since they are directly proportional.
c. If d is tripped that is multiplied by 3. From the formula new d would be (3*d)²=9d² but force is inversely proportional to d² so instead of multiplying by 9 the force will be divided by 9
d. If d is cut into half that is divided by 2. The new d would be (d/2)²=d²/4. So d² is divided by 4 so the force would be multiplied by 4
e. If qA is tripled that is multiplied by 3. F would be multiplied by 3 also, if at the same time d is doubled (2*d)²= 4*d² . Force would be divided by 4 at same time. So we have,
3/4*F
Answer:
d = 10 inch
Explanation:
The farthest distance between the centers, is along the diagonal of the rectangle. Therefore, we need to calculate the diagonal of the rectangle, but counting the fact that we have both circles.
So if, one side is 12 inch, and the other is 14 inch, we can use the Pitagoras theorem which is:
d = √(a²) + (b)²
Where a and b, are the lenght of the rectangle, but without the lenght of the diameter of both circles.
With this, the expression is this:
d = √(14 - 6)² + (12 - 6)²
d = √64+36
d = √100
d = 10 inches
The answer to the question is that before the big bang, the universe was much hotter and more dense than it is now. Letter B.
It is because after the big bag occurred, the universe became cooler and less dense.
a. - does not correspond in the answer because the universe became less dense after the big bang.
c - the universe became cool and less dense after the big bang so being cool and less dense does not correspond to the question.
d - cooler does not answer the question because it only became cooler after the big bang.
Answer:
If you are looking for past papers you can search that up and you will find plenty of resources that will help you out.