Explanation:
(a) The period of a wave is the time required for one complete cycle. In this case, we have the time of five cycles. So:

(b) The frequency of a wave is inversely proportional to its period:

(c) The wavelength is the distance between two successive crests, so:

(d) The speed of a wave is defined as:

Answer:
B)
The magnitude of induced emf in the conducting loop is 0.99 mV.
Explanation:
Rate of increase in magnetic field per unit time = 0.090 T/s
Area of the conducting loop = 110 cm^2 = 0.0110 m^2
Electromagnetic induction is the production of an emf or voltage in a coil of wire due to a changing magnetic field through the coil.
Induced e.m.f is given as:
EMF = (-N*change in magnetic field/time)*Area
EMF = rate of change of magnetic field per unit time * Area
EMF = 0.090 * 0.0110
EMF = 0.00099 V
EMF = 0.99 mV
The answwr would be d and c becasuase it just would
The answer to this question is D or the last one
If the springs are connected together from end to end, they are arranged in series. For springs in series, the forces are additive.
Spring 1: F1 = k1(Δx1)
Spring 2: F2 = k2(Δx2)
Spring 1: F3 = k3(Δx3)
Total Force = k1(Δx1)+k2(Δx2)+k3(Δx3)
Total Force = (k1+k2+k3)(Δx,total)
The spring constants are added together and multiplied with the total length of elongation to find the total force acting on it.