42.6 is the answer I believe because you would do 2,560 divided by 60 if I'm correct.
Answer:
0.775 m
Explanation:
As the car collides with the bumper, all the kinetic energy of the car (K) is converted into elastic potential energy of the bumper (U):

where we have
is the spring constant of the bumper
x is the maximum compression of the bumper
is the mass of the car
is the speed of the car
Solving for x, we find the maximum compression of the spring:

Answer:
ΔS total ≥ 0 (ΔS total = 0 if the process is carried out reversibly in the surroundings)
Explanation:
Assuming that the entropy change in the aluminium bar is due to heat exchange with the surroundings ( the lake) , then the entropy change of the aluminium bar is, according to the second law of thermodynamics, :
ΔS al ≥ ∫dQ/T
if the heat transfer is carried out reversibly
ΔS al =∫dQ/T
in the surroundings
ΔS surr ≥ -∫dQ/T = -ΔS al → ΔS surr ≥ -ΔS al = - (-1238 J/K) = 1238 J/K
the total entropy change will be
ΔS total = ΔS al + ΔS surr
ΔS total ≥ ΔS al + (-ΔS al) =
ΔS total ≥ 0
the total entropy change will be ΔS total = 0 if the process is carried out reversibly in the surroundings
If the same atoms appear on both sides, then it's balanced.
In this reaction, there are 4 Oxygens, 2 Carbons, and 2 Nitrogens on each side. So numerically, <em>it's balanced</em>. But I don't know enough chemistry to say whether the reaction is possible.