Answer:
The average linear velocity (inches/second) of the golf club is 136.01 inches/second
Explanation:
Given;
length of the club, L = 29 inches
rotation angle, θ = 215⁰
time of motion, t = 0.8 s
The angular speed of the club is calculated as follows;

The average linear velocity (inches/second) of the golf club is calculated as;
v = ωr
v = 4.69 rad/s x 29 inches
v = 136.01 inches/second
Therefore, the average linear velocity (inches/second) of the golf club is 136.01 inches/second
Answer: A light bulb can be all of the following except option C (a consumer product if it is used to light the office of the board of directors.)
Explanation:
Products are classified as being BUSINESS or CONSUMER products according to the buyer's intended use of the product.
-Consumer products: these are sold goods that are used for personal, family, or household use. The intention of the buyer is for the products to satisfy his personal needs and desires. Example of some of the consumer products include: toothpaste, eatables and clothes.
Business products: products that are not for personal use but for the manufacturing of other goods are called business products.
Therefore a bulb is not serving as a personal use when used to light the office of the board of directors rather it's serving as a business product .
Answer: The formula used to solve the problems related to first law of thermodynamics is 
Explanation:
First law of thermodynamics states that the total energy of the system remains conserved. Energy can neither be destroyed, nor be created but it can only be transformed into one form to another.
Its implication is any change in the internal energy will be either due to heat energy or work energy.
Mathematically,

where, Q = heat energy
W = work energy
= Change in internal energy
Sign convention for these energies:
For Q: Heat absorbed will be positive and heat released will be negative.
For W: Work done by the system is negative and work done on the system is positive.
For
: When negative, internal energy is decreasing and when positive, internal energy is increasing.
Hence, the formula used to solve the problems related to first law of thermodynamics is 
Answer:
0.72 Hz minimum frequency
Explanation:
When the damping is negligible,Amplitude is given as

here
= (6.30)/(0.135) = 46.67 N/m kg
= 1.70/(0.135)(0.480) = 26.2 N/m kg
From the above equation , rearranging for ω,

⇒ ω² =46.67 ± 26.2 = 72.87 or 20.47
⇒ ω = 8.53 or 4.52 rad/s
Frequency = f
ω=2 π f
⇒ f = ω / 2π = 8.53 /6.28 or 4.52 / 6.28 = 1.36 Hz or 0.72 Hz
The lower frequency is 0.72 Hz and higher is 1.36 Hz
Answer:
a. 16 s b. -1.866 kJ
Explanation:
a. Since the initial rotational speed ω₀= 3313 rev/min = 3313/60 × 2π rad/s = 346.94 rad/s. Its rotational speed becomes ω₁ = 0.75ω₀ in time t = 4 s.
We find it rotational acceleration using α = (ω₁ - ω₀)/t = (0.75ω₀ - ω₀)/t = ω₀(0.75 - 1)/t = -0.25ω₀/t = (-0.25 × 346.94 rad/s)/4 s = -21.68 rad/s².
Since the turntable stops at ω = 0, the time it takes to stop is gotten from
ω = ω₀ + αt and t = (ω - ω₀)/α = (0 - 346.94 rad/s)/-21.68 rad/s² = (-346.94/-21.68) s = 16 s.
So it takes the turntable 16 s to stop.
b. The workdone by the turntable to stop W equals its rotational kinetic energy change.
So, W = 1/2Iω² - 1/2Iω₀² = 1/2 × 0.031 kgm² × 0² - 1/2 × 0.031 kgm² × (346.94 rad/s)² = 0 - 1865.7 J = -1865.7 J = -1.8657 kJ ≅ -1.866 kJ