Answer:
The value of y = 5.1478
Explanation:
The linear equation is an equation obtained when a linear polynomial is equated to zero. When the solution obtained on solving the equation is substituted in the equation in place of the unknown, the equation gets satisfied.
The given equation: 5.3 x 10- (y)(2y) = 0
⇒ 53 - 2y² = 0
⇒ 2y² = 53
⇒ y² = 53 ÷ 2 = 26.5
⇒ y = √26.5 = 5.1478
Yes, this is balanced. Each part of the substance (like Mg) has the same number on both sides.
Hope this helps you:)
The equation is: C+O2=>CO2
Since we got 10 molecules of CO2 new balanced equation would be 10C+10O2=>10CO2
from this equation we can see that we have 10 molecules of oxygen, however ,we need to find atoms. There are 2 atoms in the oxygen molecule so we need to multiply 10 by 2 which gives us 20 atoms.
The answer: there are 20 atoms of oxygen
Use the equation q=ncΔT.
q= heat absorbed our released (in this case 1004J)
n= number of moles of sample ( in this case 2.08 mol)
c=molar heat capacity
ΔT=change in temperature (in this case 20°C)
You have to rewrite the equation for c.
c=q/nΔT
c=1004J/(2.08mol x 20°C)
c=24.1 J/mol°C
I hope this helps
Answer:
The specific heat of the metal is 0.466 
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
The equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case:
- Q= 2330 J
- c= ?
- m= 25 g
- ΔT= 200 °C
Replacing:
2330 J= c*25 g* 200 °C
Solving:

c=0.466 
<u><em>The specific heat of the metal is 0.466 </em></u>
<u><em></em></u>