HCN is a Bronsted acid; it can dissociate into H+ and CN-. And H+ is a Lewis acid because it accepts election pairs. ... In order for H+ and CN- to be formed, Hydrogen in HCN donates its electrons to Carbon. So in this sense, Hydrogen is the lewis base and Carbon is the lewis acid.
Find it on google i’m pretty sure i saw it somewhere so sorry this doesn’t help
Answer:
3.2 × 10⁻⁸
Explanation:
Let's consider the solution of magnesium carbonate.
MgCO₃ ⇄ Mg²⁺(aq) + CO₃²⁻(aq)
We can relate the molar solubility (S) with the solubility product (Ksp) using an ICE chart.
MgCO₃ ⇄ Mg²⁺(aq) + CO₃²⁻(aq)
I 0 0
C +S +S
E S S
The Ksp is:
Ksp = [Mg²⁺] × [CO₃²⁻] = S × S = S² = (1.8 × 10⁻⁴)² = 3.2 × 10⁻⁸
Answer:
pH = 1.32
Explanation:
H₂M + KOH ------------------------ HM⁻ + H₂O + K⁺
This problem involves a weak diprotic acid which we can solve by realizing they amount to buffer solutions. In the first deprotonation if all the acid is not consumed we will have an equilibrium of a wak acid and its weak conjugate base. Lets see:
So first calculate the moles reacted and produced:
n H₂M = 0.864 g/mol x 1 mol/ 116.072 g = 0.074 mol H₂M
54 mL x 1L / 1000 mL x 0. 0.276 moles/L = 0.015 mol KOH
it is clear that the maleic acid will not be completely consumed, hence treat it as an equilibrium problem of a buffer solution.
moles H₂M left = 0.074 - 0.015 = 0.059
moles HM⁻ produced = 0.015
Using the Henderson - Hasselbach equation to solve for pH:
ph = pKₐ + log ( HM⁻/ HA) = 1.92 + log ( 0.015 / 0.059) = 1.325
Notes: In the HH equation we used the moles of the species since the volume is the same and they will cancel out in the quotient.
For polyprotic acids the second or third deprotonation contribution to the pH when there is still unreacted acid ( Maleic in this case) unreacted.
Answer:
youre gonna have to include the answers for me to help
Explanation: