Answer:
Explanation:
Sodium:
Na₁₁ = 1s² 2s² 2p⁶ 3s¹
Iron:
Fe₂₆= 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶
Bromine:
Br₃₅ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁵
Barium:
Ba₅₆ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s²
Cobalt:
Co₂₇ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷
Silver:
Ag₄₇ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s¹ 4d¹⁰
Tellurium:
Te₅₂= 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁴
Radium:
Ra₈₈ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s² 4f¹⁴ 5d¹⁰ 6p⁶ 7s²
According to the Avogadro’s law I mole of any substance contains = 6.023 x 1023
Number of molecules in one mole= 6.023 x 1023
Therefore number of molecules in 6.7 moles of AlCl3:
6.023x1023 molecules /1.0 mole * 6.7 mole
= 40.3541 x 1023 molecules
= 4.03541 x 1024 molecules
Answer:
H₂Se
Explanation:
A way of estimating the acidity of a weak acid is by analizing the<em> stability of the formed anion</em>. In this case, we should find a Group 6A element that in its anionic forms (HX⁻ and X⁻²) is more stable than HS⁻ and S⁻², thus it would be more acidic in aqueous solution.
The anionic forms of Se are more stable than the forms of S, similarly to how Br⁻ is more stable than Cl⁻.
Answer:
One mole is the Avogadro's number of particles (atoms, molecules, ions or electrons) in a substance. Converting to moles is fairly easy because the conversion is always the same.